冲击动力学混凝土JohnsonHolmquistCook模型
模型描述
JHC混凝土可以用来模拟混凝土在大应变、高应变率和高压下的行为,并考虑了混凝土内孔洞坍塌的影响。
JHC混凝土的屈服应力为:
σ
y
∗
=
[
A
(
1
−
D
)
+
B
p
∗
n
]
(
1
+
C
l
n
ε
˙
∗
)
(1)
\sigma_y^{*}=[A(1-D)+Bp^{*n}](1+Cln{\dot\varepsilon^{*}})\tag{1}
σy∗=[A(1−D)+Bp∗n](1+Clnε˙∗)(1)
式中:
σ
y
∗
=
σ
y
f
c
′
(2)
\sigma_y^{*}=\frac{\sigma_y}{f_c'}\tag{2}
σy∗=fc′σy(2)
p
∗
=
p
/
f
c
′
(3)
p^{*}=p/f_c'\tag{3}
p∗=p/fc′(3)
D
D
D为损伤因子,处于
0
−
1
0-1
0−1之间
ε
˙
∗
=
ε
˙
/
ε
0
\dot\varepsilon^{*}=\dot\varepsilon/\varepsilon_0
ε˙∗=ε˙/ε0为无量纲等效应变率
ε
0
\varepsilon_0
ε0表示率相关影响屈服应力的最小值。
由式(1-1)可知,等效屈服应力随着压力增大而无限增大,但实际上其存在一个极限值,
S
m
a
x
S_{max}
Smax
由于空洞坍缩,会造成损伤演化:
D
=
∑
Δ
ε
p
+
Δ
μ
p
ε
f
p
+
μ
f
p
(4)
D=\sum\frac{\Delta\varepsilon^p+\Delta\mu^p}{\varepsilon^p_f+\mu^p_f}\tag{4}
D=∑εfp+μfpΔεp+Δμp(4)
材料在常压下的破碎塑性应变为:
ε
f
p
+
μ
f
p
=
D
1
(
p
∗
+
T
∗
)
D
2
(5)
\varepsilon^p_f+\mu^p_f=D_1(p^{*}+T^{*})^{D_2}\tag{5}
εfp+μfp=D1(p∗+T∗)D2(5)
其中
T
∗
=
T
/
f
c
′
(6)
T^{*}=T/f_c'\tag{6}
T∗=T/fc′(6)
状态方程 \bf 状态方程 状态方程
(1)线弹性阶段
p
=
K
e
l
a
s
t
i
c
μ
p=K_{elastic}\mu
p=Kelasticμ
K
e
l
a
s
t
i
c
=
p
c
r
u
s
h
μ
c
r
u
s
h
(7)
K_{elastic}=\frac{p_{crush}}{\mu_{crush}}\tag{7}
Kelastic=μcrushpcrush(7)
(2) 过渡阶段
当
p
c
r
u
s
h
≤
p
≤
p
l
o
c
k
p_{crush}\leq p\leq p_{lock}
pcrush≤p≤plock
加载:
p
=
p
c
r
u
s
h
+
K
t
a
n
(
μ
−
μ
c
r
u
s
h
)
p=p_{crush}+K_{tan}(\mu-\mu_{crush})
p=pcrush+Ktan(μ−μcrush)
卸载:
p
=
p
m
a
x
+
[
(
1
−
F
)
K
e
l
a
s
t
i
c
+
F
K
1
]
(
μ
−
μ
m
a
x
)
(8)
p=p_{max}+[(1-F)K_{elastic}+FK_1](\mu-\mu_{max})\tag{8}
p=pmax+[(1−F)Kelastic+FK1](μ−μmax)(8)
K t a n = p l o c k − p c r u s h μ l o c k − μ c r u s h (9) K_{tan}=\frac{p_{lock}-p_{crush}}{\mu_{lock}-\mu_{crush}}\tag{9} Ktan=μlock−μcrushplock−pcrush(9)
F = μ m a x − μ c r u s h μ l o c k − μ c r u s h (10) F=\frac{\mu_{max}-\mu_{crush}}{\mu_{lock}-\mu_{crush}}\tag{10} F=μlock−μcrushμmax−μcrush(10)
(3)压实状态
μ
‾
=
μ
−
μ
l
o
c
k
1
+
μ
l
o
c
k
(11)
\overline\mu=\frac{\mu-\mu_{lock}}{1+\mu_{lock}}\tag{11}
μ=1+μlockμ−μlock(11)
p
=
k
1
μ
‾
+
k
2
μ
‾
2
+
k
3
μ
‾
3
(12)
p=k_1\overline\mu+k_2\overline\mu^2+k_3\overline\mu^3\tag{12}
p=k1μ+k2μ2+k3μ3(12)