冲击动力学混凝土JohnsonHolmquistCook模型

文章介绍了Johnson-Holmquist-Cook模型在模拟混凝土在大应变、高应变率和高压环境下的行为,考虑了孔洞坍塌对混凝土的影响。模型通过屈服应力公式描述了材料响应,其中包含了压力、损伤因子和应变率等因素。同时,文章详细阐述了损伤演化的数学表达式以及不同加载状态下的状态方程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

冲击动力学混凝土JohnsonHolmquistCook模型

模型描述

JHC混凝土可以用来模拟混凝土在大应变、高应变率和高压下的行为,并考虑了混凝土内孔洞坍塌的影响。
JHC混凝土的屈服应力为:
σ y ∗ = [ A ( 1 − D ) + B p ∗ n ] ( 1 + C l n ε ˙ ∗ ) (1) \sigma_y^{*}=[A(1-D)+Bp^{*n}](1+Cln{\dot\varepsilon^{*}})\tag{1} σy=[A(1D)+Bpn](1+Clnε˙)(1)
式中:
σ y ∗ = σ y f c ′ (2) \sigma_y^{*}=\frac{\sigma_y}{f_c'}\tag{2} σy=fcσy(2)
p ∗ = p / f c ′ (3) p^{*}=p/f_c'\tag{3} p=p/fc(3)
D D D为损伤因子,处于 0 − 1 0-1 01之间
ε ˙ ∗ = ε ˙ / ε 0 \dot\varepsilon^{*}=\dot\varepsilon/\varepsilon_0 ε˙=ε˙/ε0为无量纲等效应变率
ε 0 \varepsilon_0 ε0表示率相关影响屈服应力的最小值。
由式(1-1)可知,等效屈服应力随着压力增大而无限增大,但实际上其存在一个极限值, S m a x S_{max} Smax

由于空洞坍缩,会造成损伤演化:
D = ∑ Δ ε p + Δ μ p ε f p + μ f p (4) D=\sum\frac{\Delta\varepsilon^p+\Delta\mu^p}{\varepsilon^p_f+\mu^p_f}\tag{4} D=εfp+μfpΔεp+Δμp(4)
材料在常压下的破碎塑性应变为:
ε f p + μ f p = D 1 ( p ∗ + T ∗ ) D 2 (5) \varepsilon^p_f+\mu^p_f=D_1(p^{*}+T^{*})^{D_2}\tag{5} εfp+μfp=D1(p+T)D2(5)
其中
T ∗ = T / f c ′ (6) T^{*}=T/f_c'\tag{6} T=T/fc(6)

状态方程 \bf 状态方程 状态方程

(1)线弹性阶段
p = K e l a s t i c μ p=K_{elastic}\mu p=Kelasticμ
K e l a s t i c = p c r u s h μ c r u s h (7) K_{elastic}=\frac{p_{crush}}{\mu_{crush}}\tag{7} Kelastic=μcrushpcrush(7)
(2) 过渡阶段
p c r u s h ≤ p ≤ p l o c k p_{crush}\leq p\leq p_{lock} pcrushpplock
加载:
p = p c r u s h + K t a n ( μ − μ c r u s h ) p=p_{crush}+K_{tan}(\mu-\mu_{crush}) p=pcrush+Ktan(μμcrush)
卸载:
p = p m a x + [ ( 1 − F ) K e l a s t i c + F K 1 ] ( μ − μ m a x ) (8) p=p_{max}+[(1-F)K_{elastic}+FK_1](\mu-\mu_{max})\tag{8} p=pmax+[(1F)Kelastic+FK1](μμmax)(8)

K t a n = p l o c k − p c r u s h μ l o c k − μ c r u s h (9) K_{tan}=\frac{p_{lock}-p_{crush}}{\mu_{lock}-\mu_{crush}}\tag{9} Ktan=μlockμcrushplockpcrush(9)

F = μ m a x − μ c r u s h μ l o c k − μ c r u s h (10) F=\frac{\mu_{max}-\mu_{crush}}{\mu_{lock}-\mu_{crush}}\tag{10} F=μlockμcrushμmaxμcrush(10)

(3)压实状态
μ ‾ = μ − μ l o c k 1 + μ l o c k (11) \overline\mu=\frac{\mu-\mu_{lock}}{1+\mu_{lock}}\tag{11} μ=1+μlockμμlock(11)
p = k 1 μ ‾ + k 2 μ ‾ 2 + k 3 μ ‾ 3 (12) p=k_1\overline\mu+k_2\overline\mu^2+k_3\overline\mu^3\tag{12} p=k1μ+k2μ2+k3μ3(12)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值