leetcode习题集——146. LRU缓存机制

129 篇文章 0 订阅
8 篇文章 0 订阅
本文介绍了一种利用LinkedHashMap实现LRU(最近最少使用)缓存机制的方法,包括get和put操作,确保在O(1)时间复杂度内完成。通过示例展示了如何在缓存容量达到上限时,自动移除最近最少使用的数据。
摘要由CSDN通过智能技术生成

题目

运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和 写入数据 put 。

获取数据 get(key) - 如果密钥 (key) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1。
写入数据 put(key, value) - 如果密钥不存在,则写入其数据值。当缓存容量达到上限时,它应该在写入新数据之前删除最近最少使用的数据值,从而为新的数据值留出空间。

进阶:

你是否可以在 O(1) 时间复杂度内完成这两种操作?

示例:
LRUCache cache = new LRUCache( 2 /* 缓存容量 */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1);       // 返回  1
cache.put(3, 3);    // 该操作会使得密钥 2 作废
cache.get(2);       // 返回 -1 (未找到)
cache.put(4, 4);    // 该操作会使得密钥 1 作废
cache.get(1);       // 返回 -1 (未找到)
cache.get(3);       // 返回  3
cache.get(4);       // 返回  4

算法

class LRUCache {
        LinkedHashMap<Integer, Integer> hashMap = new LinkedHashMap<>();
        int capacity;

        public LRUCache(int capacity) {
            this.capacity = capacity;
        }

        public int get(int key) {
            if (hashMap.containsKey(key)) {
                int value = hashMap.get(key);
                hashMap.remove(key);
                hashMap.put(key, value);
                return value;
            } else {
                return -1;
            }
        }

        public void put(int key, int value) {
            if (!hashMap.containsKey(key)&&hashMap.size() >= capacity) {
                hashMap.remove(hashMap.entrySet().iterator().next().getKey());
            }
            if(hashMap.containsKey(key)){
                hashMap.remove(key);
            }
            hashMap.put(key, value);
        }
    }

思路:

  1. 使用数据结构LinkedHashMap或者hashMap+双向链表也可以
  2. put操作,超过容量则移出最早一个加入list的键值对,键存在则更新其位置
  3. get操作,键存在则更新其位置,不存在则插入
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值