《机器学习》(西瓜书)学习笔记


西瓜书简介

南京大学的周志华教授,是国内机器学习领域著名的学者;同时,他还对推广机器学习,做了非常突出的贡献。他在2016年1月出版的《机器学习》,作为机器学习领域入门的书籍,深受广大学子之喜爱。可以说,欲识机器学习之门径,不可不读这本书。

由于书中经常用“西瓜”作为讲解案例,书籍封面也是西瓜的卡通图,因此江湖人称本书为“西瓜书”。此外,李航老师的《统计学习方法》短小精悍,五脏俱全,算是领域内另一本经典了。

机器学习属于计算机科学的重要分支,而西瓜书可以作为机器学习的入门教材。全书共16章,可分为3大部分:

  1. CH1-CH3, 介绍机器学习的基础知识,包括诸多专有名词;
  2. CH4-CH10,介绍机器学习领域经典而常用的算法;
  3. CH11-CH16,介绍进阶知识。

本书适宜作为机器学习的教材,本科生可阅读1-10章;研究生可全文阅读。每章另附10道习题,以飨读者。


序言

中科院陆汝钤院士为西瓜书作序。

机器学习,是人工智能领域中,最能体现智能的一个分支。机器学习领域内,细分的研究热点也在与时俱进,二十世纪八十年代,符号学习是机器学习的主流;到了二十世纪九十年代,统计机器学习则制霸此领域。前者属于纯粹理论研究和模型研究,后者则是以解决现实问题为目的。

陆汝钤院士提出了六个问题, 在此记录。当然,院士的视角和我等绝不一样,但也权做记录吧。

  1. 曾经盛行的符号学习是否在当今的AI研究中被忽略了?
  2. 假定样本数据集“独立同分布”,对于机器学习来说是否是必需的?
  3. 深度学习是否代表了机器学习的新方向?
  4. 在AI领域用到的数学方法主要是概率统计,那么难道只有统计方法适用于机器学习吗?
  5. 离散方法处理符号机器学习问题,连续方法处理统计机器学习问题,那么如何将二者统一起来?
  6. 大数据时代的出现,有没有给机器学习带来本质的影响?

如何使用本书

周志华老师写在第十次印刷之际

  1. 这是一本教科书
  2. 这是一本入门教科书
  3. 这是一本面向理工科高年级本科生和研究生的教科书
  4. 本书适宜多读几遍

初学机器学习,容易陷入一个误区:以为熟练了“十大算法”,便可以解决任何问题,于是将目光仅聚焦在具体算法推导和编程实现上;带到实践发现效果不如人意,则有转对机器学习发生怀疑。

读者要知道,书本仅能展示有限的“套路”,而现实世界任务千变万化,以有限之套路,应对无限之变化,焉能不败?现实中,更多的情况是,需要根据任务特点,对现有套路进行改造。(个人深深佩服这段话,膜拜0-0)


目录

CH1 绪论

CH2 模型评估与选择

CH3 线性模型

CH4 决策树

CH5 神经网络

CH6 支持向量机

CH7 贝叶斯分类器

CH8 集成学习

CH9 聚类

CH10 降维与度量学习

CH11 特征选择与稀疏学习

CH12 计算学习理论

CH13 半监督学习

CH14 概率图模型

CH15 规则学习

CH16 强化学习

  • 8
    点赞
  • 111
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
西瓜书是《机器学习》这本教材的昵称,在这本书中作者使用Python语言进行代码实现。以下是关于西瓜书Python代码的回答: 西瓜书中的Python代码用于实现各种机器学习算法和相关实验。作者使用Python这一通用的高级编程语言,结合各种机器学习库,如Scikit-learn等,来实现算法。 例如,在第二章关于感知机的代码实现中,作者使用Python定义了一个类Perceptron,包含初始化函数、训练函数和预测函数。这些函数使用Python语法实现了感知机算法的各个步骤,如权重的初始化、正类和负类的划分、误分类点的更新等。通过调用这些函数,可以进行感知机的训练和预测过程。 同样,在后续的章节中,作者使用Python代码来实现了其他的机器学习算法,如k近邻算法、朴素贝叶斯等。通过这些代码实现,读者可以学习到如何使用Python实现这些算法,以及如何使用相关的库函数来简化实现过程。 此外,西瓜书中的代码还包括了一些实验演示,通过使用Python代码可以完成一些实验,如不同算法在一些数据集上的表现比较、参数调优等。这些实验可以帮助读者更深入地理解机器学习算法的原理和效果。 总而言之,西瓜书的Python代码是作者使用Python语言来实现机器学习算法和相关实验的一种方式,通过这些代码,读者可以学习并应用这些算法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值