oneDNN、oneMKL 和 oneTBB 介绍及使用

1. oneDNN(Intel® oneAPI Deep Neural Network Library)

  • 简介
    oneDNN 是 Intel 开源的深度学习神经网络加速库,专为 CPU 和 GPU 上的深度学习推理和训练优化。它提供高效的底层算子(如卷积、池化、矩阵乘法等),支持多种深度学习框架(如 TensorFlow、PyTorch)作为后端。

  • 核心功能

    • 高性能的神经网络算子(如卷积、RNN、BatchNorm)。
    • 支持 INT8 量化推理。
    • 自动内存管理和线程调度优化。
  • 使用示例(C++)
    以下是一个简单的卷积操作示例:

    #include <oneapi/dnnl/dnnl.hpp>
    using namespace dnnl;
    
    void demo_convolution() {
        engine eng(engine::kind::cpu, 0);
        stream s(eng);
    
        // 定义输入、权重、输出的维度
        memory::dims input_dims = {1, 3, 224, 224};  // NCHW格式
        memory::dims weight_dims = {64, 3, 3, 3};   // OIHW格式
        memory::dims output_dims = {1, 64, 222, 222};
    
        // 创建内存对象
        auto input_mem = memory({{input_dims}, memory::data_type::f32, memory::format_tag::nchw}, eng);
        auto weight_mem = memory({{weight_dims}, memory::data_type::f32, memory::format_tag::oihw}, eng);
        auto output_mem = memory({{output_dims}, memory::data_type::f32, memory::format_tag::nchw}, eng);
    
        // 定义卷积算子
        auto conv_desc = convolution_forward::desc(
            prop_kind::forward_inference,
            algorithm::convolution_auto,
            input_mem.get_desc(),
            weight_mem.get_desc(),
            output_mem.get_desc(),
            {1, 1},  // Stride
            {0, 0}    // Padding
        );
        auto conv_prim = convolution_forward(conv_desc, eng);
    
        // 执行卷积
        conv_prim.execute(s, {
            {DNNL_ARG_SRC, input_mem},
            {DNNL_ARG_WEIGHTS, weight_mem},
            {DNNL_ARG_DST, output_mem}
        });
        s.wait();
    }
    
  • 编译命令

    g++ -O2 demo.cpp -o demo -ldnnl
    

2. oneMKL(Intel® oneAPI Math Kernel Library)

  • 简介
    oneMKL 是高性能数学库,提供优化的数学函数(如 BLAS、LAPACK、FFT、随机数生成等),支持 CPU、GPU 和 FPGA,适用于科学计算、金融分析等领域。

  • 核心功能

    • 线性代数(矩阵乘法、分解)。
    • 快速傅里叶变换(FFT)。
    • 统计函数(随机数生成、统计分布)。
  • 使用示例(矩阵乘法)

    #include <CL/sycl.hpp>
    #include <oneapi/mkl.hpp>
    using namespace sycl;
    using namespace oneapi::mkl;
    
    void demo_gemm() {
        queue q;
        const int m = 1024, n = 1024, k = 1024;
        float *A = malloc_shared<float>(m * k, q);
        float *B = malloc_shared<float>(k * n, q);
        float *C = malloc_shared<float>(m * n, q);
    
        // 填充数据(略)
        blas::gemm(q, transpose::N, transpose::N, m, n, k, 1.0f, A, k, B, n, 0.0f, C, n);
        q.wait();
    }
    
  • 编译命令

    g++ -O2 demo.cpp -o demo -lmkl_sycl -lmkl_intel_ilp64 -lmkl_core
    

3. oneTBB(Intel® oneAPI Threading Building Blocks)

  • 简介
    oneTBB 是 C++ 并行编程库,提供任务调度、并行算法(如 parallel_for)和并发容器,简化多线程开发,支持动态负载均衡。

  • 核心功能

    • 并行循环(parallel_forparallel_reduce)。
    • 任务调度器(自动管理线程池)。
    • 并发容器(如 concurrent_queue)。
  • 使用示例(并行求和)

    #include <tbb/parallel_reduce.h>
    #include <tbb/blocked_range.h>
    #include <vector>
    using namespace tbb;
    
    float parallel_sum(const std::vector<float>& data) {
        return parallel_reduce(
            blocked_range<size_t>(0, data.size()),
            0.0f,
            [&](const blocked_range<size_t>& r, float init) {
                for (size_t i = r.begin(); i < r.end(); ++i)
                    init += data[i];
                return init;
            },
            [](float a, float b) { return a + b; }
        );
    }
    
  • 编译命令

    g++ -O2 demo.cpp -o demo -ltbb
    

总结

库名应用场景优势
oneDNN深度学习推理/训练低延迟、高吞吐量,支持量化
oneMKL科学计算、数值分析数学函数高度优化,跨硬件支持
oneTBB多线程任务并行简化并行编程,动态负载均衡
  • 协作示例:在深度学习训练中,可用 oneTBB 管理线程池,oneMKL 加速矩阵运算,oneDNN 实现卷积层。
  • 共同点:均属于 oneAPI 生态,支持跨 CPU/GPU 异构计算。

如需进一步优化,建议参考官方文档调整参数(如内存布局、线程数)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Arthur.AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值