一、算法描述
输入一棵节点数为 n 二叉树,判断该二叉树是否是平衡二叉树。
在这里,我们只需要考虑其平衡性,不需要考虑其是不是排序二叉树平衡二叉树(Balanced Binary Tree),具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
示例1
输入:{1,2,3,4,5,6,7}
返回值:true
二、解题思路
在这个算法中,我们使用了递归的思想。对于每个节点,先递归判断其左子树和右子树是否为平衡二叉树。如果左子树和右子树都是平衡二叉树,则判断左右子树的高度差是否小于等于1,如果是,则返回true;否则返回false。如果左子树或右子树不是平衡二叉树,则当前树也不是平衡二叉树,返回false。为了计算树的高度,我们定义了getHeight函数,该函数也是通过递归实现的。在计算树的高度时,我们首先计算左子树的高度和右子树的高度,然后返回左右子树高度的较大值加1。
时间复杂度分析:
假设树中共有n个节点,则在最坏情况下,isBalanced函数需要递归遍历整棵树,并调用getHeight函数计算每个节点的高度,因此isBalanced函数的时间复杂度为O(nlogn)。而getHeight函数的时间复杂度为O(n),因为它只需要对每个节点遍历一次。因此,总的时间复杂度为O(nlogn)。
空间复杂度分析:
递归调用isBalanced函数时,每次都会占用一定的栈空间,因此isBalanced函数的空间复杂度为O(logn)。getHeight函数的空间复杂度也为O(logn)。因此,总的空间复杂度为O(logn)。
需要注意的是,在某些特殊情况下,如左右子树的高度差大于1时,该算法的效率可能会更高,因为它可以及早返回false,避免继续递归遍历整棵树。但是,在最坏情况下,该算法的时间复杂度为O(nlogn)。
三、C++代码实现
#include <iostream>
#include <algorithm>
using namespace std;
// 定义二叉树的节点结构体
struct TreeNode {
int val;
TreeNode* left;
TreeNode* right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
public:
bool isBalanced(TreeNode* root) {
if (root == NULL) {
return true;
}
// 分别递归判断左子树和右子树是否为平衡二叉树
bool leftIsBalanced = isBalanced(root->left);
bool rightIsBalanced = isBalanced(root->right);
if (leftIsBalanced && rightIsBalanced) {
// 如果左子树和右子树都是平衡二叉树,则判断左右子树的高度差是否小于等于1
int leftHeight = getHeight(root->left);
int rightHeight = getHeight(root->right);
return abs(leftHeight - rightHeight) <= 1;
} else {
// 如果左子树或右子树不是平衡二叉树,则当前树也不是平衡二叉树
return false;
}
}
// 计算树的高度
int getHeight(TreeNode* root) {
if (root == NULL) {
return 0;
}
int leftHeight = getHeight(root->left);
int rightHeight = getHeight(root->right);
return max(leftHeight, rightHeight) + 1;
}
};
int main() {
// 测试样例
TreeNode* root = new TreeNode(1);
root->left = new TreeNode(2);
root->right = new TreeNode(3);
root->left->left = new TreeNode(4);
root->left->right = new TreeNode(5);
root->left->left->left = new TreeNode(6);
Solution s;
if (s.isBalanced(root)) {
cout << "The given binary tree is a balanced binary tree" << endl;
} else {
cout << "The given binary tree is not a balanced binary tree" << endl;
}
return 0;
}