题解 | #BM35 判断是不是完全二叉树#

该文介绍了如何判断一棵二叉树是否为平衡二叉树,算法基于递归思想,首先检查左右子树是否平衡,然后计算它们的高度差。如果差值不超过1,则树是平衡的。时间复杂度为O(nlogn),空间复杂度为O(logn)。提供的C++代码实现了这一算法。
摘要由CSDN通过智能技术生成

一、算法描述

输入一棵节点数为 n 二叉树,判断该二叉树是否是平衡二叉树。

在这里,我们只需要考虑其平衡性,不需要考虑其是不是排序二叉树平衡二叉树(Balanced Binary Tree),具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

示例1

输入:{1,2,3,4,5,6,7}

返回值:true

二、解题思路

在这个算法中,我们使用了递归的思想。对于每个节点,先递归判断其左子树和右子树是否为平衡二叉树。如果左子树和右子树都是平衡二叉树,则判断左右子树的高度差是否小于等于1,如果是,则返回true;否则返回false。如果左子树或右子树不是平衡二叉树,则当前树也不是平衡二叉树,返回false。为了计算树的高度,我们定义了getHeight函数,该函数也是通过递归实现的。在计算树的高度时,我们首先计算左子树的高度和右子树的高度,然后返回左右子树高度的较大值加1。

时间复杂度分析:

假设树中共有n个节点,则在最坏情况下,isBalanced函数需要递归遍历整棵树,并调用getHeight函数计算每个节点的高度,因此isBalanced函数的时间复杂度为O(nlogn)。而getHeight函数的时间复杂度为O(n),因为它只需要对每个节点遍历一次。因此,总的时间复杂度为O(nlogn)。

空间复杂度分析:

递归调用isBalanced函数时,每次都会占用一定的栈空间,因此isBalanced函数的空间复杂度为O(logn)。getHeight函数的空间复杂度也为O(logn)。因此,总的空间复杂度为O(logn)。

需要注意的是,在某些特殊情况下,如左右子树的高度差大于1时,该算法的效率可能会更高,因为它可以及早返回false,避免继续递归遍历整棵树。但是,在最坏情况下,该算法的时间复杂度为O(nlogn)。

三、C++代码实现

#include <iostream>
#include <algorithm>

using namespace std;

// 定义二叉树的节点结构体
struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

class Solution {
public:
    bool isBalanced(TreeNode* root) {
        if (root == NULL) {
            return true;
        }
        // 分别递归判断左子树和右子树是否为平衡二叉树
        bool leftIsBalanced = isBalanced(root->left);
        bool rightIsBalanced = isBalanced(root->right);
        if (leftIsBalanced && rightIsBalanced) {
            // 如果左子树和右子树都是平衡二叉树,则判断左右子树的高度差是否小于等于1
            int leftHeight = getHeight(root->left);
            int rightHeight = getHeight(root->right);
            return abs(leftHeight - rightHeight) <= 1;
        } else {
            // 如果左子树或右子树不是平衡二叉树,则当前树也不是平衡二叉树
            return false;
        }
    }

    // 计算树的高度
    int getHeight(TreeNode* root) {
        if (root == NULL) {
            return 0;
        }
        int leftHeight = getHeight(root->left);
        int rightHeight = getHeight(root->right);
        return max(leftHeight, rightHeight) + 1;
    }
};

int main() {
    // 测试样例
    TreeNode* root = new TreeNode(1);
    root->left = new TreeNode(2);
    root->right = new TreeNode(3);
    root->left->left = new TreeNode(4);
    root->left->right = new TreeNode(5);
    root->left->left->left = new TreeNode(6);
    Solution s;
    if (s.isBalanced(root)) {
        cout << "The given binary tree is a balanced binary tree" << endl;
    } else {
        cout << "The given binary tree is not a balanced binary tree" << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值