统计基础:3.2_假设检验的两类错误

本文详细阐述了假设检验中的第一类错误(α错误)和第二类错误(β错误),介绍了它们的产生原因、相互关系及影响因素,包括显著性水平、总体参数、样本量等。并探讨了如何通过合理设置显著性水平和假设构建来间接控制两类错误。
摘要由CSDN通过智能技术生成

1、Ⅰ、Ⅱ类错误及其产生的原因

  虽然小概率事件发生的概率很小,但依然有可能发生。由于抽样的随机性,利用小概率原理对H0是否成立作为判断时,难免会犯两类错误。

  • 第一类错误(α错误/弃真错误):实际上 H 0 H_0 H0为真时,但利用随机抽样样本,构建的小概率事件出现了,作出拒绝 H 0 H_0 H0的决策,即α=P(拒绝 H 0 H_0 H0| H 0 H_0 H0为真)

  • 第二类错误(β错误/取伪错误):实际上 H 0 H_0 H0为伪时,但利用随机抽样样本,构建的小概率事件未出现了,作出接受 H 0 H_0 H0的决策,即β=P(接受 H 0 H_0 H0| H 0 H_0 H0为伪)

2、两类错误的关系以及影响因素

  • 第一类错误的影响因素

  由实际推断原理引起的,即“小概率事件不会发生”的假定所引起的,所以有理由将所有小概率事件发生的概率之和或者即显著性水平(α=0.05)看作α错误发生的概率,换言之,α错误发生的概率为检验所选择的显著性水平。如果是单侧检验,弃真错误的概率则为 α/2

  • 第二类错误的影响因素

  通常情况下的做法只是控制犯第一类错误的概率α,而忽略第二类错误的概率β,但有些情况下,第二类错误不可忽视,为了实现对两类错误的控制,需要剖析两类错误的关系以及影响因素。

施行特征函数
  定义若C是参数 θ \theta θ某检验问题的一个检验法, β ( θ ) = P θ ( 接 受 H 0 ) \beta(\theta)=P_{\theta}(接受H_0) β(θ)=Pθ(H0),称为检验法C的施行特征函数或者OC函数,其图形称为OC曲线。
  若假定检验法的显著性水平α,即犯第一类错误的概率为 P θ ∈ H 0 ≤ α , 则 当 P_{\theta \in H_0}≤α,则当 PθH0α θ ∈ H 0 \theta \in H_0 θH0时,做出正确判断的概率为: P θ ∈ H 0 ( 接 受 H 0 ) = β ( θ ) P_{\theta \in H_0}(接受H_0)=\beta(\theta) PθH0(H0)=β(θ) ≥ 1-α;则当$ θ ∈ H 1 \theta \in H_1 θH1时,犯第二类错误的概率为 P θ ∈ H 0 ( 接 受 H 0 ) = β ( θ ) = β P_{\theta \in H_0}(接受H_0)=\beta(\theta)=\beta PθH0(H0)=β(θ)=β ,做出正确判断的概率为: P θ ∈ H 1 ( 拒 绝 H 0 ) = 1 − β ( θ ) P_{\theta \in H_1}(拒绝H_0)=1-\beta(\theta) PθH1(H0)=1β(θ)
  在检验的过程中希望α与β都尽可能小,即做出正确判断的概率 P θ ∈ H 0 ( 接 受 H 0 ) = β ( θ ) P_{\theta \in H_0}(接受H_0)=\beta(\theta) PθH0(H0)=β(θ) ≥ 1-α与 P θ ∈ H 1 ( 拒 绝 H 0 ) = 1 − β ( θ ) P_{\theta \in H_1}(拒绝H_0)=1-\beta(\theta) PθH1(H0)=1β(θ)都越大越好,但这种期望能否达到呢?
  设总体 X ∼ N ( u , σ 2 ) X\sim N(u,\sigma^2) XN(u,σ2),其中u未知,σ已知, X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn是来自X的样本。在显示性水平α下,对u进
行左侧检验:
H 0 : u ≥ u 0 H_0:u≥u_0 H0:uu0 vs H 1 : u < u 0 H_1:u<u_0 H1:u<u0,拒绝域 X ˉ − u 0 σ / n ≤ − z α \frac{\bar X-u_0}{\sigma/ \sqrt n}≤-z_α σ/n Xˉu0zα
  此检验的OC函数为:
β ( u ) = P u ( 接 受 H 0 ) = P u ( X ˉ − u 0 σ / n > − z α ) = P u ( X ˉ − u 0 σ / n > − z α − u − u 0 σ / n ) = ϕ ( z α + λ ) \beta(u)=P_u(接受H_0)=P_u(\frac{\bar X-u_0}{\sigma/ \sqrt n}>-z_α)=P_u(\frac{\bar X-u_0}{\sigma/ \sqrt n}>-z_α-\frac{ u-u_0}{\sigma/ \sqrt n})=\phi(z_\alpha+\lambda) β(u)=Pu(H0)=Pu(σ/n Xˉu0>zα)=Pu(σ/n Xˉu0>zασ/n uu0)=ϕ(zα+λ)
其中, λ = u − u 0 σ / n \lambda=\frac{ u-u_0}{\sigma/ \sqrt n} λ=σ/n uu0,其OC曲线如图所示:
在这里插入图片描述
β ( u ) \beta(u) β(u)函数性质如下:

  • λ \lambda λ的连续单调递增函数;
  • lim ⁡ u → ∞ ˉ β ( u ) = 1 \displaystyle\lim_{u \rightarrow \bar \infty}\beta(u)=1 uˉlimβ(u)=1, lim ⁡ u → u 0 β ( u ) = 1 − α \displaystyle\lim_{u \rightarrow u_0}\beta(u)=1-\alpha uu0limβ(u)=1α

  由检验的OC函数,β(u)可知, β = P u < u 0 ( 接 受 H 0 ) = ϕ ( z α + u − u 0 σ / n ) β=P_{u<u_0}(接受H_0)=\phi(z_α+\frac{u-u_0}{\sigma/\sqrt n}) β=Pu<u0(H0)=ϕ(zα+σ/n uu0)。因此,β的大小与显著性水平α、u的真实值、总体标准差σ、样本容量n有关。

  • 显著性水平α

  由分布函数的性质以及正态分布上的α分位可知,当其它条件不变时,α大,则β小;反之α小,必导致β大。故犯两类错误的概率α于β存在“此消彼长”的关系。

  • u的真实值

  由OC函数的性质, lim ⁡ u → u ˉ 0 β ( u ) = 1 − α \displaystyle\lim_{u \rightarrow \bar u_0}\beta(u)=1-\alpha uuˉ0limβ(u)=1α可知,当u的真实值趋于 u ˉ 0 \bar u_0 uˉ0时,不管其它量如何变化,只要α取值较小,β几乎等于1-α。即对所有的 u ∈ H 1 u\in H_1 uH1,控制 β = P u ∈ H 1 ( 接 受 H 0 ) \beta=P_{u\in H_1}(接受H_0) β=PuH1(H0)都很小是不可能实现的。只有当u与u0的差距较大时,方可有办法将β控制在一定范围之内。

  • 总体标准差σ

  σ是离散趋势的主要度量指标,σ越大,抽取的随机样本的代表性相对较差,由 β = P u < u 0 ( 接 受 H 0 ) = ϕ ( z α + u − u 0 σ / n ) β=P_{u<u_0}(接受H_0)=\phi(z_α+\frac{u-u_0}{\sigma/\sqrt n}) β=Pu<u0(H0)=ϕ(zα+σ/n uu0)可知,在其他量一定的情况下,β是σ的增函数。因此,总体的标准差σ越小,β会越小。

  • 样本容量n
      样本容量n越大,抽选的随机样本所提供的有关总体的信息越多。由 β = P u < u 0 ( 接 受 H 0 ) = ϕ ( z α + u − u 0 σ / n ) β=P_{u<u_0}(接受H_0)=\phi(z_α+\frac{u-u_0}{\sigma/\sqrt n}) β=Pu<u0(H0)=ϕ(zα+σ/n uu0)可知,在u与u0的差距较大,其他量不变的情况下,β是n的减函数。因此,在此条件允许的情况下,增大样本容量n,β会随之减少。

  犯β错误的概率的计算是比较复杂的,由于β错误的出现原因是属于逻辑上的,所以在总体参数不知道的情况下是无法计算它出现概率的大小的。

3、如何控制两类错误

  犯第一类错误的概率 α \alpha α可以通过适当改变检验的拒绝域来进行调整。

  由上文可知,β的大小与显著性水平α、u的真实值、总体标准差σ、样本容量n有关。这四个因素中,u未知,σ通常已知,因此没有办法通过这两个因素来有效控制β;在一定条件下,显著性水平σ与β存在“此消彼长”的关系,并且β是样本容量n的减函数,但是即使增大α或者增大n,也无法实现对β量化。一般情况下,无法直接控制β,但是可以通过间接的措施达到对β的控制的目的。

  结合假设检验的基本思想,H0与H1的不对等性、假设检验的目的以及检验结果的解释,具体措施入如下:

  • 巧妙建立假设

  成功的假设检验策略,以拒绝H0为检验目的,假设检验只能证明H0的伪,而不能证明H0的真。因此,在假设的建立过程中要谨慎小心。一般把传统的,原始的观念设立为H0;H0中应包含等号;后果严重的错误设定为第一类错误

  • 谨慎解释检验的结果

  检验统计量的观测值落入接受域,仅仅表明所构建的小概率事件没有发生,但是不能证实其它与H0相矛盾的小概率事件不发生。因此,但检验统计量的观测值落入接受域时,不能断定认为H0是正确的,此时犯第二类错误的概率β是未知。此时把检验的结果严谨解释为“没有发现充足的证据拒绝H0”

  • 恰当设置显著性水平α

  不一味的追求α尽可能小,结合具体的问题仔细斟酌两类错误后果的严重性。若第一类错误的后面比较严重(判断一个人是否患病),而第二类错误的后果无足轻重,则可以选择较小的α;否则,需要放大α的取值;

  • 4
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值