题意:给出一个字符串,字符串的长度为m,字符串中不同的字符有n种,并且给出添加或删除每个这n种字符的花费,让你求出让这个字符串成为回文串的最小花费。
思路:定义状态为dp[i][j]表示从i到j的字符串成为回文串的最小代价,那么最终要求的答案就是dp[0][n-1],这个大区间自然要通过小区间转移而来,重叠的子问题与该问题相同,每个大区间都由小区间转移而来,所以我们自下往上求,如何定义小区间和大区间的转移关系呢,与LCS的转移过程很像,如下:
当str[i]==str[j]的时候 :dp[i][j]=dp[i+1][j-1]
当dp[i][j-1]是回文串的时候:dp[i][j]=min(dp[i][j],dp[i][j-1]+min(add[str[j]],delete[str[i]]))
当dp[i+1][j]是回文串的时候:dp[i][j]=min(dp[i][j],dp[i+1][j]+min(add[str[i]],delete[str[j]]))
注意:后两种情况并不是都是真正转移到dp[i][j-1]和dp[i+1][j]这两个位置,而是分别转移到了右边缩小的回文区间和从左边缩小的回文区间;这也许就是dp最有魅力的地方;前一状态总会存储着符合条件的状态.
行了,上代码。
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<stdlib.h>
using namespace std;
#define maxn 2004
#define inf 0x3f3f3f3f
int dp[maxn][maxn];
map<char,int> add,delet;
int main()
{
int n,m;
string str;
scanf("%d%d",&n,&m);
cin>>str;
char c;
int ad;
int de;
for(int i=1;i<=n;i++){
cin>>c>>ad>>de;
add[c]=ad;
delet[c]=de;
add[c]=min(add[c],delet[c]);
}
memset(dp,0,sizeof(dp));
for(int k=1;k<str.size();k++){
for(int i=0,j=k;j<str.size();i++,j++){
dp[i][j]=inf;
if(str[i]==str[j]){
dp[i][j]=dp[i+1][j-1];
}else{
dp[i][j]=min(dp[i+1][j]+add[str[i]],dp[i][j]);
dp[i][j]=min(dp[i][j-1]+add[str[j]],dp[i][j]);
}
}
}
cout<<dp[0][m-1]<<endl;
}