阿里天池训练营day02:sklean逻辑回归初体验Demo学习

本文记录了阿里天池训练营day02的学习内容,重点在于sklearn逻辑回归的实战练习。从模型训练、参数查看、数据可视化到模型预测,详细介绍了每个步骤。在实践中,学习了Python模块导入、数据处理和模型预测的相关技巧,如多维数据转一维、数据行拼接,并对逻辑回归模型进行了深入理解。
摘要由CSDN通过智能技术生成

阿里天池训练营day02:sklean逻辑回归初体验Demo学习
今天的任务是算法实践,基于sklean实现逻辑回归算法,先根据平台提供的方法学习模型的使用,再扩展学习一下sklean的常用函数和用法

1.模型练习的流程

Step1:库函数导入
Step2:模型训练
Step3:模型参数查看
Step4:数据和模型可视化
Step5:模型预测

2. 实战练习

Step1:库函数导入

##  基础函数库
import numpy as np 

## 导入画图库
import matplotlib.pyplot as plt
import seaborn as sns

## 导入逻辑回归模型函数
from sklearn.linear_model import LogisticRegression

python导入模块的方法有几种,甚至出现一些专门的模块专门负责整体代码的模块导入工作

Step2:模型训练

##Demo演示LogisticRegression分类

## 构造数据集
x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]])
y_label = np.array([0, 0, 0, 1, 1, 1])

## 调用逻辑回归模型
lr_clf = LogisticRegression()

## 用逻辑回归模型拟合构造的数据集
lr_clf = lr_clf.fit(x_fearures, y_label) #其拟合方程为 y=w0+w1*x1+w2*x2

Step3:模型参数查看

## 查看其对应模型的w
print('the weight of Logistic Regression:',lr_clf.coef_)

## 查看其对应模型的w0
print('the intercept(w0) of Logistic Regression:',lr_clf.intercept_)

输出:

the weight of Logistic Regression: [[0.73455784 0.69539712]]
the intercept(w0) of Logistic Regression: [-0.13139986]

Step4:数据和模型可视化

## 可视化构造的数据样本点
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')
plt.show()

在这里插入图片描述

# 可视化决策边界
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')

nx, ny = 200, 100
x_min, x_max = plt.xlim()
y_min, y_max = plt.ylim()
x_grid, y_grid = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny))

z_proba = lr_clf.predict_proba(np.c_[x_grid.ravel(), y_grid.ravel()])
z_proba = z_proba[:, 1].reshape(x_grid.shape)
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()

在这里插入图片描述

### 可视化预测新样本

plt.figure()
## new point 1
x_fearures_new1 = np.array([[0, -1]])
plt.scatter(x_fearures_new1[:,0],x_fearures_new1[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 1',xy=(0,-1),xytext=(-2,0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## new point 2
x_fearures_new2 = np.array([[1, 2]])
plt.scatter(x_fearures_new2[:,0],x_fearures_new2[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 2',xy=(1,2),xytext=(-1.5,2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## 训练样本
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')

# 可视化决策边界
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()

在这里插入图片描述

期间出现一个warning
/opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:7: MatplotlibDeprecationWarning: The 's' parameter of annotate() has been renamed 'text' since Matplotlib 3.3; support for the old name will be dropped two minor releases later. import sys /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:12: MatplotlibDeprecationWarning: The 's' parameter of annotate() has been renamed 'text' since Matplotlib 3.3; support for the old name will be dropped two minor releases later. if sys.path[0] == '':
可以知道annotate()函数的s参数已经更名为text参数了

Step5:模型预测

## 在训练集和测试集上分布利用训练好的模型进行预测
y_label_new1_predict = lr_clf.predict(x_fearures_new1)
y_label_new2_predict = lr_clf.predict(x_fearures_new2)

print('The New point 1 predict class:\n',y_label_new1_predict)
print('The New point 2 predict class:\n',y_label_new2_predict)

## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所有我们可以利用 predict_proba 函数预测其概率
y_label_new1_predict_proba = lr_clf.predict_proba(x_fearures_new1)
y_label_new2_predict_proba = lr_clf.predict_proba(x_fearures_new2)

print('The New point 1 predict Probability of each class:\n',y_label_new1_predict_proba)
print('The New point 2 predict Probability of each class:\n',y_label_new2_predict_proba)

输出:

The New point 1 predict class:
 [0]
The New point 2 predict class:
 [1]
The New point 1 predict Probability of each class:
 [[0.69567724 0.30432276]]
The New point 2 predict Probability of each class:
 [[0.11983936 0.88016064]]
可以发现训练好的回归模型将X_new1预测为了类别0(判别面左下侧),X_new2预测为了类别1(判别面右上侧)。其训练得到的逻辑回归模型的概率为0.5的判别面为上图中蓝色的线。

3.学习总结

通过python机器学习库sklearn来做回归算法非常容易,除去一些数据准备和结果展示的工作,最重要的就是调用库来进行拟合、预测,即下面两句。

lr_clf = LogisticRegression()
lr_clf = lr_clf.fit(x_fearures, y_label) #其拟合方程为 y=w0+w1*x1+w2*x2
y_label_new1_predict = lr_clf.predict(x_fearures_new1)

新的库用法总结起来主要是:

  • LogisticRegression()
  • fit()
  • predict_proba()

除此以外,这次新学到很多其他内容,在下面这个代码块中:

nx, ny = 200, 100
x_min, x_max = plt.xlim()
y_min, y_max = plt.ylim()
x_grid, y_grid = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny))

z_proba = lr_clf.predict_proba(np.c_[x_grid.ravel(), y_grid.ravel()])
z_proba = z_proba[:, 1].reshape(x_grid.shape)
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()

主要涉及的内容:

  • x_grid.ravel()多维数据转为一维扩展学习:Python/numpy之ravel()多维数据展平函数
  • np.c_()数据的行拼接扩展学习: Python/numpy之np.r_[]和np.c_[]拼接函数
  • contour()带参数,[0.5]即绘制0.5那条等高线(顺便说一下,这几行代码的逻辑是建立网格并转化为一维数据,主要就是想把整个平面都计算一下,predict_proba为概率形式预测,由于只有分隔平面上才有概率为0.5,因此在contour绘制等高线时,绘制[0.5]那条等高线就是绘制出分隔线。这种实现方法挺有意思的)
    除了以上学习的内容,接下来将会通过几篇展开的内容巩固学习。
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值