小红书算法岗面试,竞争太激烈了

最近已有不少大厂都在秋招宣讲了,也有一些在 Offer 发放阶段。

节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。

针对新手如何入门算法岗、该如何准备面试攻略、面试常考点、大模型技术趋势、算法项目落地经验分享等热门话题进行了深入的讨论。

总结链接如下:

喜欢本文记得收藏、关注、点赞。更多实战和面试交流,文末加入我们星球

为什么要跳槽

在前司两年过的还算比较开心。校招加入后分到一个负责给力的 mentor,教会了我很多。

入职后3个月内火速 launch 了两次算法模型优化并推全上线。辛苦的背后是频繁的架构调整,两年期间换了3次组,负责的业务也一变再变,这个时候 mentor 的跳槽,让我萌生了退意。

在年初晋升被卡,让我觉得没有任何可以留下来的理由。所以至此,我没有一点犹豫的选择离开,并且这次基本上都找了熟人内推。

社招背景

  • 本科中流985生环材专业,研究生华五计算机专业。

  • 两段实习经历:阿里妈妈-实习8个月 → Disney+hotstar 实习4个月。

  • 校招6个SP,四个大SP,加入京东广告部。

  • 在京东工作两年,期间负责了三个业务的精排算法,一共发起7次纯模型结构优化的推全上线。

结果概述

知道晋升被卡的结果,我开始重新登录 LeetCode,历时一个多月,面试了多家企业。经过多轮面试和准备,最后选择了小红书。

面试高频提问点

  1. 讲讲做的推荐的项目

  2. 热度召回怎么做

  3. 做的推荐系统项目,怎么评价做的好不好的?

  4. 推荐冷启动问题怎么解决?

  5. 推荐的 point-wise、pair-wise、list-wise 简单介绍下,区别是什么?

  6. 多目标融合方法?如何调参?

  7. 推荐业务流程介绍?

  8. DeepFM 模型原理?DeepFM 的 FM 怎么做的

  9. Wide&Deep 模型原理?

  10. DeepFM 和 widedeep 的区别?哪个更注重泛化性,哪个更注重记忆?

  11. MMoE 模型介绍下,解决了什么问题?MoE 和 MMoE 区别?

  12. id 类特征、类别特征、连续特征怎么嵌入?

  13. 深度学习中防止过拟合的方法?

  14. Transformer 介绍?

  15. Self-attention 和 Target-attention 区别?

  16. LightGBM 和 XGBoost 的原理和区别?

  17. Dropout 在预测和训练阶段的区别?

  18. RNN 原理?

  19. RNN有哪些变种?原理介绍?

  20. LGB 和 XGB 对缺失值的处理方式区别?

  21. RF 和 LGB 在方差和偏差的区别?

  22. L1和L2的区别?

  23. Batch-norm和Layer-norm介绍和区别?

  24. Batch-norm使用时需要注意什么?

技术交流

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值