HDU1874 畅通工程续

Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(N属于(0,200),M属于(0,1000)),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B小于N,A!=B,X属于(0,10000)),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T小于N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3
0 1 1
0 2 3
1 2 1
0 2
3 1
0 1 1
1 2
Sample Output
2
-1

模板题,注意输出判断条件就可以了

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std; 
#define INF 0x3f3f3f3f
int pri[210][210];
int dis[210];
int vis[210];
int n,m;
void dijkstra(int s)
{
    memset(vis,0,sizeof(vis));
    vis[s]=1;
    for(int i=0;i<n;i++)
    dis[i]=pri[s][i];
    for(int i=0;i<n;i++)
    {
        int M=INF,k=-1;
        for(int j=0;j<n;j++)
        {
            if(!vis[j]&&dis[j]<M)
            M=dis[j],k=j;
        }
        if(k==-1)
        return ;
        vis[k]=1;
        for(int j=0;j<n;j++)
            if(!vis[j]&&dis[j]>dis[k]+pri[k][j])
                dis[j]=dis[k]+pri[k][j];
    }
}
int main()
{
    int s,t;
    while(~scanf("%d%d",&n,&m))
    { 
        for(int i=0;i<n;i++)
            for(int j=0;j<n;j++)
                pri[i][j]=i==j?0:INF;
        for(int i=1;i<=m;i++)
        {
            int a,b,c;
            scanf("%d%d%d",&a,&b,&c);
            pri[a][b]=pri[b][a]=min(pri[a][b],c);
        }
        scanf("%d%d",&s,&t);
        dijkstra(s);
        if(dis[t]==INF)
        printf("-1\n");
        else
        printf("%d\n",dis[t]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值