Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(N属于(0,200),M属于(0,1000)),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B小于N,A!=B,X属于(0,10000)),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T小于N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3
0 1 1
0 2 3
1 2 1
0 2
3 1
0 1 1
1 2
Sample Output
2
-1
模板题,注意输出判断条件就可以了
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f3f
int pri[210][210];
int dis[210];
int vis[210];
int n,m;
void dijkstra(int s)
{
memset(vis,0,sizeof(vis));
vis[s]=1;
for(int i=0;i<n;i++)
dis[i]=pri[s][i];
for(int i=0;i<n;i++)
{
int M=INF,k=-1;
for(int j=0;j<n;j++)
{
if(!vis[j]&&dis[j]<M)
M=dis[j],k=j;
}
if(k==-1)
return ;
vis[k]=1;
for(int j=0;j<n;j++)
if(!vis[j]&&dis[j]>dis[k]+pri[k][j])
dis[j]=dis[k]+pri[k][j];
}
}
int main()
{
int s,t;
while(~scanf("%d%d",&n,&m))
{
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
pri[i][j]=i==j?0:INF;
for(int i=1;i<=m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
pri[a][b]=pri[b][a]=min(pri[a][b],c);
}
scanf("%d%d",&s,&t);
dijkstra(s);
if(dis[t]==INF)
printf("-1\n");
else
printf("%d\n",dis[t]);
}
return 0;
}