机器学习
uuup111
这个作者很懒,什么都没留下…
展开
-
softmax函数
Softmax函数的定义(以第i个节点输出为例):其中,为第i个节点的输出值,为输出节点的个数,即分类的类别个数。通过Softmax函数就可以将多分类的输出值转换为范围在[0, 1]和为1的概率分布。...原创 2022-04-18 09:55:03 · 607 阅读 · 0 评论 -
精华汇总:医学数据集及机器学习项目
<div class="article-metas"> 机器学习的医学数据这是一个机器学习医疗数据的策划清单。此列表仅供参考,请确保您尊重此处列出的任何数据的任何和所有使用限制。1.医学影像数据医学图书馆向13,000名患者注释提供了53,000张医学图像的MedPix®数据库。需要注册。信息:https : ...转载 2020-04-16 13:21:10 · 2719 阅读 · 0 评论 -
图神经网络(Graph neural networks)综述
|· 本文为博主原创”·|【嵌牛导读】:图是一种结构化数据,它由一系列的对象(nodes)和关系类型(edges)组成。作为一种非欧几里得形数据,图分析被应用到节点分类、链路预测和聚类等方向。图网络是一种基于图域分析的深度学习方法,对其构建的基本动机论文中进行了分析阐述。【嵌牛鼻子】:深度学习、图神经网络【嵌牛提问】:图神经网络当今的研究热点有哪些?【嵌牛正文】:主要引用论文链接:Gra...转载 2020-03-24 11:56:30 · 3309 阅读 · 0 评论 -
图嵌入(Graph embedding)
目录Graph embedding的意义图嵌入可以解决的问题为什么我们要使用图形嵌入?什么是图嵌入?图嵌入的挑战Word2vec图嵌入方法总结参考资料后记Graph embedding的意义 Graph广泛存在于真实世界的多种场景中,即节点和边的集合。比如社交网络中人与人之间的联系,生物中蛋白质相互作用以及通信网络中的IP地址之间的通信等等。除此之外,我们最常见的一张图片、一个句子也可以抽象...转载 2020-03-18 20:48:39 · 17902 阅读 · 7 评论 -
Deep Clustering - 深度聚类:方法与实现
https://python.ctolib.com/zhoushengisnoob-DeepClustering.html https://github.com/zhoushengisnoob/DeepClustering(同上) https://blog.csdn.net/yyl424525/article/details/100058193原创 2020-03-18 09:07:01 · 7318 阅读 · 0 评论 -
图,谱,马尔可夫过程,聚类结构
== 图==是表达事物关系和传递扩散过程的重要数学抽象图的矩阵表达提供了使用代数方法研究图的途径谱,作为一种重要的代数方法,其意义在于对复杂对象和过程进行分解图上的马尔可夫更新过程是很多实际过程的一个重要抽象图的谱结构的重要意义在于通过它对马尔可夫更新过程进行分解分析图的第一特征值对应于马尔可夫过程的平衡状态,图的第二特征值刻画了这个过程的收敛速度(采样的效率,扩散和传播速度,网络的...原创 2020-03-06 15:48:49 · 301 阅读 · 0 评论 -
语义分割评估指标MIOU
语义分割评估指标MIOU 定义 Mean Intersection over Union(MIoU,均交并比)为语义分割的标准度量。其计算两个集合的交集和并集之比,在语义分割问题中,这两个集合为真实值(ground truth)和预测值(predicted segmentation)。这个比例可以变形为 TP(交集)比上 TP、FP、FN 之和(并集)。在每个类上计算 IoU,然后...转载 2019-12-17 09:57:25 · 3031 阅读 · 0 评论 -
fight overfitting 防止过度训练的方式
添加数据/增加样本量 减少算法复杂度 训练时,添加约束和正则化项来惩罚模型复杂度 删掉没用的特征 当在一套训练数据集上出现了过度拟合的时候就停止...原创 2019-12-23 21:47:02 · 214 阅读 · 0 评论 -
imagenet的训练集和测试集
迅雷打开种子验证集:http://academictorrents.com/download/5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5.torrent训练集:http://academictorrents.com/download/a306397ccf9c2ead27155983c254227c0fd938e2.torrent...原创 2019-12-13 21:58:43 · 2702 阅读 · 6 评论 -
PCA的python实现
PCA的python实现原理部分:https://blog.csdn.net/ws_developer/article/details/81634059这篇博客介绍的很详细,让我在本子上记了不少东西。实现:1.直接调用函数# -*- coding: utf-8 -*-"""Created on Sun Nov 3 10:10:52 2019@author: Admi...原创 2019-11-03 10:38:50 · 766 阅读 · 0 评论 -
深度学习在时间序列分类中的应用
知乎:https://zhuanlan.zhihu.com/p/83130649https://zr9558.com/2019/09/06/cnnfortimeseriesclassification/原创 2020-02-02 12:09:29 · 855 阅读 · 0 评论 -
Filter concatenation
将相同尺寸的图按深度链接起来,即 有3个3X3X1,2个3X3X2,1个3X3X4的输入,经过Filter concatenation后,变为3X3X11。3X1+2X2+1X4=11得到通道数量。原创 2020-02-02 11:43:06 · 533 阅读 · 0 评论 -
图神经网络和传统图模型以及原来的深度学习之间的关系
图神经网络和传统图模型以及原来的深度学习之间的关系从研究任务的角度来看,比如数据挖掘领域的社会网络分析问题像 DeepWalk、LINE 这些 graph embedding 算法,聚焦在如何对网络节点进行低维向量表示,相似的节点在空间中更加接近。图神经网络(GNN)① GNN可以对一个节点进行语义表示。GNN可以更好地考虑这个节点周围的丰富信息,对单个节点的表示也可以做的比过去方法...转载 2019-12-17 11:54:59 · 1432 阅读 · 0 评论 -
U-Net
基于一种更加优雅的结构FCN,对这种结构进行了一定的修改和拓展,以使其使用更少的训练图像,产生更高精度的分割。网络结构收缩路径就是常规的卷积网络,它包含重复的2个3x3卷积,紧接着是一个RELU,一个max pooling(步长为2),用来降采样,每次降采样我们都将feature channel减半。 扩展路径包含一个上采样(2x2上卷积),这样会减半feature chann...原创 2019-12-17 11:34:39 · 193 阅读 · 0 评论 -
图神经网络(GNN)
新智元报道 来源:towardsdatascience作者:黃功詳 Steeve Huang 编辑:肖琴【新智元导读】图神经网络(GNN)在各个领域越来越受欢迎,本文介绍了图神经网络的基本知识,以及两种更高级的算法:DeepWalk和GraphSage。最近,图神经网络 (GNN) 在各个领域越来越受到欢迎,包括社交网络、知识图谱、推荐系统,甚至生命科学。GNN 在对图形中节点间的依赖关系进行建...转载 2019-12-17 11:24:58 · 385 阅读 · 0 评论 -
卷积网络中的通道、特征图、过滤器和卷积核
卷积网络中的通道、特征图、过滤器和卷积核1.feature map 1 feature map 在cnn的每个卷积层,数据都是以三维形式存在的。你可以把它看成许多个二维图片叠在一起(像豆腐皮一样),其中每一个称为一个feature map。 2 feature map怎么生成的? 输入层:在输入层,如果是灰度图片,那就只有一个feature map;若是彩色图片...原创 2019-12-17 11:01:05 · 5728 阅读 · 6 评论 -
无监督学习
无监督学习(unsurpervised learning)是深度学习的基础,也是大数据时代科学家们用来处理数据挖掘的主要工具。个人理解的话就是数据太多,而人们不可能给每个数据样本加标签吧,所以才有了无监督学习。当然用的最多的是用无监督学习算法训练参数,然后用一部分加了标签的数据测试,这种方法叫半监督学习(semi-unsurpervised)。最近看的几个深度学习算法是:稀疏自编码(s...转载 2019-10-11 09:46:34 · 207 阅读 · 0 评论 -
利用图神经网络处理问题的一般化流程
1、图节点预表示:利用NE框架,直接获得全图每个节点的Embedding;2、正负样本采样:(1)单节点样本;(2)节点对样本;3、抽取封闭子图:可做类化处理,建立一种通用图数据结构;4、子图特征融合:预表示、节点特征、全局特征、边特征;5、网络配置:可以是图输入、图输出的网络;也可以是图输入,分类/聚类结果输出的网络;6、训练和测试;https://github.com/xchad...转载 2020-03-12 10:59:38 · 414 阅读 · 0 评论 -
决策树ID3的实现-python
import numpy as npimport pandas as pd# 创造数据集def createDataSet(): data_row = { 'no surfacing': [1, 1, 1, 0, 0], 'flippers': [1, 1, 0, 1, 1], 'fish': ['yes', 'yes', 'no'...原创 2020-03-17 14:48:57 · 321 阅读 · 0 评论 -
概率有向图模型之贝叶斯网络
慕课上北理工的课1.概率有向图模型1.1 基本原理使用有向无环图表示变量之间的关系1.2 例子:1.2.1 3个变量的全连接概率图模型根据概率乘积规则:关于变量的联合概率分布 每个变量都对应于一个结点。上图中,存在一条从结点x1指向x2的有向边,故结点x1是结点x2的父结点,结点x2是结点x1的子结点。 每个条件概率都对应于一条有向边,起点是条件概率中条件随机变量...原创 2020-03-16 16:41:49 · 1924 阅读 · 0 评论 -
网格搜索调参法与交叉验证
网格搜索调参法与交叉验证网格搜索定义:网格搜索法是指定参数值的一种穷举搜索方法,通过将估计函数的参数通过交叉验证进行优化来得到最优的学习算法。步骤:·将各个参数可能的取值进行排列组合,列出所有可能的组合结果生成“网格”。·然后将各组合用于SVM训练,使用交叉验证对表现进行评估。·在拟合函数尝试了所有的参数组合后,返回一个合适的分类器,自动调整至最佳(性能度量)参...原创 2019-12-07 16:24:49 · 1653 阅读 · 0 评论 -
怎样理解近端梯度下降PGD?
周志华《机器学习》第11章L1正则化部分提到的知乎有人解答的挺好的~就是4) 对泰勒展开式简化公式第三行的第二个减号应该是+https://www.zhihu.com/question/265426774/answer/374340519...原创 2019-12-07 14:23:47 · 1250 阅读 · 0 评论 -
为什么平方损失函数不适用分类问题
作者:李龙链接:https://www.zhihu.com/question/319865092/answer/661457523来源:知乎这个我看过吴恩达的机器学习视频上说过,一般平方损失函数的公式如下图所示:h表示的是你的预测结果,y表示对应的标签,J就可以理解为用二范数的方式将预测和标签的差距表示出来,模型学习的过程就是优化权重参数,使得J达到近似最小值,理论上这个损失函...原创 2019-12-07 11:01:20 · 4271 阅读 · 1 评论 -
向量和矩阵的各种范数
向量和矩阵的各种范数一、向量的范数首先定义一个向量为:a=[-5,6,8, -10]1.1 向量的1范数向量的1范数即:向量的各个元素的绝对值之和,上述向量a的1范数结果就是:29,MATLAB代码实现为:norm(a,1);1.2 向量的2范数向量的2范数即:欧几里得范数向量的每个元素的平方和再开平方根,上述a的2范数结果就是:15,MATLAB代码实现为:n...原创 2019-12-05 15:18:41 · 5491 阅读 · 0 评论 -
多实例学习
多实例学习(Multi Instance Learning)定义:假设训练数据集中每个数据是一个包(Bag),每个包都是实例(Instance)的集合,每个包都有一个训练标记,而包中的实例没有标记。多实例的目的是对新的包进行类别预测。规则:若包中至少存在一个正标记的实例,则包被赋予正标记。 若包被标为负标记,那其中所有的实例均...原创 2019-12-04 16:40:27 · 1105 阅读 · 0 评论 -
多分类 one-vs-rest
多类别分类:有多个类:一对多算法(one-vs-all):就是使用多个分类器,对于每一个类假设其为正类,然后使用一次二分类的判别算法即可分别得出各个类的分类。...原创 2019-11-25 08:04:17 · 2956 阅读 · 0 评论 -
相似度学习、多模态相似度学习、多特征融合、表示学习、注意力机制、外部记忆选择
相似度学习目的:量化地衡量输入样本之间的相关性。多模态相似度学习目的:衡量样本和样本之间在不同方面的不同相似度。多特征融合目的:对不同性质的特征进行融合,并挖掘这些不同特征内部和特征之间的关系,以提高具体任务的准确度。表示学习目的:通过对输入样本的原始数据进行优化,去除输入样本中的噪声和冗余信息并形成新的表示。注意力机制核心思想:在学习的过程中基于样本种不同的内...原创 2019-11-11 16:24:32 · 2447 阅读 · 0 评论 -
自编码器(Auto-encoder,AE)
自编码器自编码器是一种无监督学习技术,利用 反向传播算法使得输出值(输入数据的高效表示)等于输入值的人工神经网络,它先将输入压缩成潜在空间表征,然后通过这种表征来重构输出。自编码是一种数据压缩算法,其中压缩和解压功能是:1)数据特定的,2)有损的,3)从例子中自动学习而不是由人工设计。此外,在几乎所有使用术语“自动编码器”的情况下,压缩和解压缩功能都是由神经网络来实现的。自编码...原创 2019-11-11 13:09:24 · 2624 阅读 · 0 评论 -
Keras 自编码器AutoEncoder(五)
原创 Keras 自编码器AutoEncoder(五) ...转载 2019-11-11 13:08:41 · 344 阅读 · 0 评论 -
对抗生成网络GAN
一、GAN -Generative Adversarial Network1.思想二人零和博弈思想,博弈上方的利益之和是一个常数。例如,AB两人掰手腕,假设总空间是一定的。那么在这个空间中,如果A力气比B大,A得到的空间就会相对多一些,B相对要少一些,反之亦然。在GAN中,两个博弈者分别是生成模型G和判别模型D,它们分别有各自的功能。生成模型和判别模型的相同点:两个模型...原创 2019-11-11 13:38:28 · 287 阅读 · 0 评论 -
机器学习:激活函数(Activation Functions)与损失函数(Loss Functions)
对于神经网络中的某层,激活函数常表示为:hi(x)对于某个训练实例,损失函数常表示为:L(预测值,真实值)对于整个训练集,成本函数Cost Function常表示为:J(W,b)标题...原创 2019-10-05 16:41:06 · 455 阅读 · 0 评论 -
机器学习:模型-逻辑回归(Logistic Regression)
标题原创 2019-10-05 16:24:55 · 172 阅读 · 0 评论 -
机器学习:范数规则化-L0、L1、L2范数及loss函数
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 ...转载 2019-10-05 16:16:30 · 2479 阅读 · 0 评论 -
机器学习:数据预处理-独热编码(One-Hot)
1. 为什么使用 one-hot 编码? 问题:在机器学习算法中,我们经常会遇到分类特征,例如:人的性别有男女,祖国有中国,美国,法国等。 这些特征值并不是连续的,而是离散的,无序的。 目的: 如果...转载 2019-10-05 16:04:06 · 997 阅读 · 0 评论 -
分类或回归机器学习项目的步骤&python实现的模板
一、分类或回归模型的机器学习项目可以分成以下六个步骤:(1)定义问题。(2)理解数据。(3)数据准备。(4)评估算法。(5)优化模型。(6)结果部署。二、Python机器学习项目的模板(适用于分类或回归问题)#1. 定义问题##a) 导入类库##b) 导入数据集#2. 理解数据##a) 描述性统计##b) 数据可视化#3. 数据准备##a) 数据清洗##b) 特征选...原创 2019-10-05 15:07:10 · 598 阅读 · 0 评论 -
机器学习分类
原创 2019-09-19 20:04:38 · 119 阅读 · 0 评论