脑功能连接计算之基于种子点的方法

随着磁共振技术在神经科学中的应用,越来越多研究发现,不同脑区间不但在结构上存在连接,在任务状态甚至静息状态下也存在功能连接。
功能连接被具体定义为两段不同脑区BOLD序列在时间维度上的相关程度。
BOLD-fMRI成像序列是一个4D的成像序列,如下图所示,每个体素(voxel)都包含了一串时间序列,代表该区域血氧水平依赖信号随时间的变化。
在这里插入图片描述
皮尔逊相关系数的取值范围为-1≤r≤1。以bold信号为例,如下图所示,当两段时间序列的相关系数0<R≤1时,表示这两段时间序列呈正相关,且随着数值的增加,正相关越强,达到1时为完全正相关,此时两段时间序列的信号强度随时间同时增强或者减弱(左图);同理,当两段时间序列的相关系数 -1≤R<0,表示这两段时间序列呈负相关,且随着数值的减小,负相关越强,达到-1时为完全负相关,此时两段时间序列的信号强度随时间增强或者减弱的趋势完全相反(中图);相关系数为0时,表示这两段时间序列相互独立,即两段信号之间强度随时间增强或者减弱的趋势无关,可能相同也可能相反(右图)。因此,我们可以认为,bold信号呈正相关的脑区之间表现为功能协同,而呈负相关的脑区之间表现为功能拮抗
在这里插入图片描述
现在,我们已经搞懂了功能连接的数学基础和物理意义。接下来,我们来聊聊功能连接在数据处理里的具体应用。基于种子点的功能连接(seed-based FC)是最常见的分析方法,即:

  • 先确定一个脑区或者多个脑区(该脑区内每个voxel时间序列首先需要保持高度一致性)作为感兴趣区域(ROI)
  • 提取出ROI内平均时间序列
  • 计算ROI之间或者每个ROI和全脑体素时间序列的皮尔逊相关系数。

做功能连接时,有两种分析思路:voxel-wise FC和ROI-wise FC。voxel-wise是基于voxel水平的分析;ROI-wise是基于ROI水平分析。

  • voxel-wise FC。选择一或多个种子点ROI,然后每个种子点的平均时间序列与全脑每个体素的时间序列做相关性分析,得到种子点的全脑功能连接图;
  • ROI-wise FC,选择N个ROI,各个ROI时间序列之间做相关性分析,得到一个N*N的两两ROI之间的相关矩阵。

ROI的选取主要来源于:

  • 其他脑功能或结构指标的统计差异显著脑区
  • 基于标准分区模板
  • 基于文献坐标
  • 手工绘制ROI

voxel-wise FC 的计算过程:

  • 选取ROI(保证ROI内部具有高度功能一致性)
  • 计算出ROI内所有体素的平均时间序列
  • 将计算出的平均时间序列与全脑体素时间序列逐个进行皮尔逊相关计算(包括ROI自身内部所有体素)
  • 对于全脑每个体素,都可以得到一个该体素与预选ROI的相关系数,最终可以得到一个全脑功能连接映射图(FC map)
  • 对其正态化处理后,就可以在组水平上进行统计分析。(通过Fisher-Z变换将皮尔逊相关系数的分布由原来的-11的偏态转换成-∞∞的正态分布以符合假设检验的前提假说)
    上述步骤产生的结果图
  • 也可以提取差异相关脑区的zFC值与行为或临床资料进行相关分析。

ROI-wise的计算过程:

  • 和voxel-wise的功能连接一样,ROI-wise的功能连接同样也需要事先确定ROI,
  • 并计算ROI内所有体素的平均时间序列,方法也和voxel-wise的方法一致,
  • 不同的是,ROI-wise的功能连接需要最少确立两个ROI。
  • 假设我们选取了n个ROI,那么接下来,如下图所示,我们计算ROI两两之间的相关系数,得到功能连接矩阵。
    在这里插入图片描述
  • 对其进行组水平统计和统计化:
    在这里插入图片描述
    在这里插入图片描述
  • 进一步进行图论的分析:
    在这里插入图片描述

功能连接的两种分析思路ROI-wise与Voxel-wise的异同点

  • 相同点:都需要预先选择ROI。

不同点如下:

  • ROI数目:ROI-wise≥2, Voxel-wise每次一个
  • 结果:ROI-wise是连接矩阵,Voxel-wise是映射图
  • 统计结果可视化:ROI-wise用矩阵图、点线图、环形图,Voxel-wise用脑区映射
  • 进一步分析手段:ROI-wise使用图论分析,Voxel-wise使用与相关、量表做相关

看的这里:(https://m.baidu.com/ala/c/www.360doc.cn/mip/809810689.html)

### 功能连接种子点的选择 在功能连接分析中,选择种子点是一个至关重要的步骤。种子点通常是指在一个已知具有特定功能的大区域内的一个小范围兴趣区(Region of Interest, ROI)。通过计算这个区域内的时间序列与其他区之间的相似度,可以评估不同区间是否存在同步活动模式。 #### 基于解剖结构的方法 一种常见的做法是从标准的解剖图谱出发选取种子点位置[^1]。例如,在人类研究中最常用的自动标记图谱(Automated Anatomical Labeling, AAL),它提供了详细的皮层分区方案;而在动物实验里,则可能采用适合物种特点的地图集作为参照框架[^3]。这种方法的优势在于能够利用现有的神经科学知识指导定位过程,并且容易解释所得结果的意义。 #### 数据驱动的方式 除了依赖先验假设外,还可以采取更加灵活的数据导向策略来识别潜在的重要节点。比如应用独立成分分析(Independent Component Analysis, ICA)算法分解得到多个空间分布相对稳定的空间模态,从中挑选那些表现出较强内在关联特性的部分充当候选对象。这种方式有助于发现一些之前未被充分认识的新颖网络关系。 #### 经典案例与实际操作建议 具体到实践层面的操作指南方面,当涉及到全水平的功能连接探索时,往往推荐结合多种资源共同决定最终使用的坐标集合。一方面要考虑到目标群体的特点及其所涉及的任务背景等因素的影响;另一方面也要兼顾现有软硬件条件能否支持相应规模运算的需求。以MATLAB为例,可以通过加载预先定义好的模板文件如AAL atlas并配合其他辅助函数完成这一任务[^4]。 ```matlab % 加载AAL模板 load('aal.mat'); % 显示可用标签列表 disp(aal.labels); % 获取感兴趣区域索引号 roiIndex = find(strcmp(aal.labels,'Frontal_Sup_L')); % 提取对应体素掩码 maskVolume = aal.maskVolume; seedMask = maskVolume == roiIndex; ```
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值