中间件--ClickHouse-7--冷热数据分离,解决Mysql海量数据瓶颈

在web应用中,当数据量非常大时,即使MySQL的存储能够满足,但性能一般也会比较差。此时,可以考虑使用ClickHouse存储历史数据,在Mysql存储最近热点数据的方式,来优化和提升查询性能。ClickHouse的设计初衷就是为了解决大规模数据分析场景下的性能问题,特别是在处理OLAP(联机分析处理)任务时表现优异。

但是,通常不推荐直接使用Clickhouse作为数据库使用,虽然Clickhouse查询大数量时表现优秀,但其本身不支持事务,不具备Innodb锁等机制。Clickhouse其主要作用是优化海量数据的查询问题,所以结合Mysql做冷热数据分离的方式更推荐。海量的冷数据存储在Clickhouse中,最近的热点数据存储在Mysql中。

1、ClickHouse vs MySQL在大数据量场景下的对比

在这里插入图片描述
ClickHouse更适合处理海量数据的分析查询,而MySQL更擅长事务处理和频繁的数据修改。

2、具体思路

(1)、数据迁移

  • 如果你的业务已经运行在MySQL上,但发现查询性能瓶颈,可以将部分数据迁移到ClickHouse中。
  • 通常的做法是将需要频繁分析的历史数据或日志数据导入到ClickHouse,而MySQL继续负责事务处理。
  • 迁移工具:
    • 可以通过ETL工具(如Apache NiFi、DataX等)将数据从MySQL导出并导入到ClickHouse。
    • 或者直接使用ClickHouse的INSERT INTO … SELECT …语句从MySQL中抽取数据。

(2)、数据分层架构

  • MySQL作为主数据库:用于存储在线交易数据,支持高频的增删改操作。
  • ClickHouse作为分析引擎:定期从MySQL同步数据,或者通过日志(如Binlog)实时订阅MySQL的变化数据,加载到ClickHouse中进行分析。
  • 这种架构既能保证事务处理的灵活性,又能充分发挥ClickHouse在分析查询上的优势。

(3)、查询分离

  • 将复杂的分析查询从MySQL转移到ClickHouse。例如:
    • 如果你需要统计过去一年的用户行为数据,并按月进行汇总分析,这种查询可能会让MySQL不堪重负。
    • 而在ClickHouse中,这类查询可以在秒级甚至毫秒级完成。

(4)、数据压缩与列式存储

  • ClickHouse的列式存储和高效压缩算法能够显著减少存储空间占用,同时提高查询性能。
  • 对于大规模数据集,存储成本和I/O开销往往是性能瓶颈的重要因素,ClickHouse在这方面具有明显优势。

3、具体案例

  • 场景:电商网站的日志分析
  • 问题:电商平台每天产生大量的用户访问日志和订单数据,存储在MySQL中。随着时间推移,数据量达到TB级别,查询变得越来越慢。
  • 解决方案:
    (1)、将历史日志数据从MySQL导出到ClickHouse。
    (2)、在ClickHouse中创建表,并使用MergeTree引擎进行存储。
    (3)、定期将MySQL中的增量数据同步到ClickHouse。
    (4)、使用ClickHouse执行复杂的分析查询,例如:

sql示例:

 SELECT toDate(event_time) AS event_date, COUNT(*) AS event_count
 FROM user_logs
 WHERE event_date BETWEEN '2025-01-01' AND '2025-01-31'
 GROUP BY event_date;

这类查询在ClickHouse中通常只需几秒钟即可完成。

4、性能对比

场景:5000万条日志数据查询
在这里插入图片描述
优化效果:

  • 查询速度提升:200倍以上(从分钟级到秒级)。
  • 存储成本降低:压缩率高达 17倍(10GB → 600MB)。

可以看到,相同的数据放到Mysql和ClickHouse中,占用的内存节省了90%多,查询的速度也是非常高效的。

5、注意事项

尽管ClickHouse在处理大数据量方面表现出色,但也需要注意以下几点:

(1)、不适合频繁更新:

  • ClickHouse不擅长频繁的单行更新或删除操作。如果你的业务需要频繁修改数据,可能需要结合其他工具(如Kafka)来实现增量更新。

(2)、学习曲线:

  • ClickHouse的功能和优化方式与传统的关系型数据库有很大不同,团队可能需要时间熟悉其特性和最佳实践。

(3)、数据一致性:

  • ClickHouse本身不提供强一致性保证,因此在需要高一致性的场景下,仍需依赖MySQL或其他事务型数据库。

(4)、硬件需求:

  • ClickHouse对硬件资源(尤其是内存和CPU)要求较高,尤其是在分布式部署时。

6、数据迁移步骤

(1)、数据迁移

步骤 1:定义历史数据范围

  • 时间字段:确保 MySQL 表中存在时间字段(如 create_time 或 update_time),用于划分历史数据和近期数据。
  • 迁移条件:例如,将三个月之前 create_time < ‘2025-01-12’ 的数据迁移到 ClickHouse。

步骤 2:迁移历史数据

  • 工具选择:

    • 全量迁移:使用 mysqldump或mydumper导出历史数据,通过clickhouse-client导入。
    • 增量迁移(可选):使用 Canal、Debezium 或 TapData 实时捕获 MySQL 的 Binlog,过滤历史数据并同步到 ClickHouse。
  • 迁移示例:
    – 在 MySQL 中导出历史数据(示例)

  mysqldump -u user -p --where="create_time < '2025-01-12'" dbname table_name > history_data.sql

– 转换为 CSV 格式(如通过脚本或工具)
– 导入到 ClickHouse

  clickhouse-client --query="INSERT INTO clickhouse_table FORMAT CSV" < history_data.csv

步骤 3:清理MySQL中的历史数据

  • 分区表优化:在 MySQL 中按时间分区,删除旧分区以释放空间(参考知识库[9])。
    – 创建分区表(示例)
  ALTER TABLE mysql_table 
  PARTITION BY RANGE (TO_DAYS(create_time)) (
      PARTITION p2024 VALUES LESS THAN (TO_DAYS('2025-01-01')),
      PARTITION p2025 VALUES LESS THAN (TO_DAYS('2026-01-01'))
  );

– 删除旧分区

  ALTER TABLE mysql_table DROP PARTITION p2024;

(2)、查询路由实现

方案 1:应用层路由

  • 逻辑判断:在应用代码中根据时间条件决定查询 MySQL 或 ClickHouse。
    python示例:
  def query_data(start_time, end_time):
      if end_time < '2025-01-12':   // 三个月之前
           查询 ClickHouse
          return clickhouse_query(...)
      elif start_time > '2025-01-12':   // 三个月之内
           查询 MySQL
          return mysql_query(...)
      else:
           合并查询(如需跨时间范围)
          return merge(mysql_query(...), clickhouse_query(...))

方案 2:中间件路由

  • 使用代理工具:如 ProxySQL 或自定义 SQL 路由服务,根据查询条件动态转发请求。
  • 示例规则:
    • 若查询条件中 create_time < ‘2025-01-12’,则路由到 ClickHouse。
    • 否则路由到 MySQL。

7、总结建议

当MySQL在大数据量场景下性能不足时,ClickHouse是一个非常优秀的解决方案,特别是在需要高性能分析查询的场景中。通过合理的数据分层架构和查询分离策略,可以充分利用ClickHouse的优势,同时保留MySQL在事务处理上的灵活性。
不过,ClickHouse并非万能药。它最适合的是只读或批量写入的大数据分析场景。在引入ClickHouse之前,建议充分评估业务需求,并制定清晰的数据迁移和查询优化策略。

逆风翻盘,Dare To Be!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值