之前在阿里实习的时候课题就是用迁移学习来赋能推荐。
首先谈谈迁移学习是什么——简单来说就是利用源域数据来解决目标域的问题。那为什么要用它——很多时候是因为目标域数据量不够或者效果不好,通过迁移学习,目标域中的数据稀疏和冷启动问题都能得到缓解。
如果对推荐算法有了解话,很快会想到ESSM和MMOE这种多任务学习的算法,确实这也是推荐场景下最广为人知的算法,多任务学习就可以认为是迁移学习的一种。除此之外,最简单的fine-tune结构属于迁移学习。
本文会持续更新我看到的一些文章或者实践,都是用迁移学习的方法提高推荐的效果。
ESMM
MMOE
MOSE
MiNet
《MiNet: Mixed Interest Network for Cross-Domain Click-Through Rate Prediction》
背景
本文做的是跨域推荐。什么叫”跨域“呢?单域也就是”游戏“只推荐”游戏“类的东西,它基于的数据也都是游戏用户本身的东西。跨域是指,我要给“鬼畜区”推荐东西,但是使用的数据不只是鬼畜区自己的,它还包括了”舞蹈区“,”数码区“,”游戏区“等其他域产生的数据。
跨域推荐实际是有一种前提的,就是基于重叠,一部分的特征也好、用户也好、物品也好,能够有一些重叠,通过重叠的部分找到两个域之间的一些关联。
目前的CTR模型主要都是解决单域推荐的问题,比如做广告的ctr预估,就只使用广告的日志来训练模型。然而,广告通常是和一些自然内容一起展示出来的&