丑数(Ugly Number)的判别和证明

本文介绍了丑数的概念,即仅包含因子2、3、5的正整数,并提供了判断一个数是否为丑数的算法实现。通过具体的数学证明解释了算法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

丑数

只包含因子2,3,5的正整数被称作丑数,比如4,10,12都是丑数,而7,23,111则不是丑数,另外1也是丑数。即因子中的所有质数范围在{2,3,5}之间,否则则不是丑数。

判断方法

首先除2,直到不能整除为止,然后除5到不能整除为止,然后除3直到不能整除为止。最终判断剩余的数字是否为1,如果是1则为丑数,否则不是丑数。

用计算机辨别:

if(num > 0)

    for(int i = 2; i < 6; i++)

        while(num % i == 0)

            num /= i;

    return num == 1;

证明:(个人方法)

现有一数为num,其中num = n1 * n2 = n3 * n4,n1 不等于n3,n4,n2也不等于n3,n4,则可得n1/n3 = n4/n2,现在不妨假设n1为质数,且n1 不等于2,3,5,那么现在n1/n3是最简形式,n4/n2=n1/n3,要么n4=n1,n2=n3,要么n4=x* n1,n2=x* n3,那么无论怎样的乘式(=num)都可以转换成n1 * n3 * x,因为n1为质数,且不等于2,3,5,那么用这三个数除num,都不可能最终使num==1,于是得到这样一个结论,上面的程式可以判断一个数不是丑数,那么它可以判断一个数是丑数吗,首先质数不是丑数,而一个合数不是丑数,这意味着它要么没有质数因子,要么质数因子中只有2,3,5,那么它就是一个丑数,综上,上面的程式可以判断出一个数是否为丑数。


在Python中实现寻找丑数的函数,可以利用动态规划的思想。丑数的定义是只包含质因子2、35的正整数,且通常1被认为是第一个丑数。根据题目的思路,每一个新的丑数都是由之前的某个丑数乘以2、3或5得到的。因此,我们可以维护三个指针,分别对应乘以2、乘以3乘以5的情况,每次迭代选出这三个数中的最小值作为下一个丑数,同时更新指针。以下是具体的实现步骤代码: 参考资源链接:[剑指Offer:丑数(Python)](https://wenku.csdn.net/doc/64530762fcc539136803da9f?spm=1055.2569.3001.10343) 1. 初始化一个数组用于存储丑数,首先存入第一个丑数1。 2. 初始化三个指针i2、i3、i5,分别表示当前乘以2、乘以3、乘以5的丑数在数组中的位置,初始值为0。 3. 初始化变量nextUglyNumber为第一个丑数1。 4. 对于第n个丑数,从nextUglyNumber开始,进行以下步骤直到找到第n个丑数: a. 计算出数组中乘以2、乘以3、乘以5后的候选丑数。 b. 从这三个候选丑数中选出最小的一个,作为下一个丑数。 c. 更新对应的指针i2、i3、i5,使其指向选出的丑数在数组中的位置。 d. 更新变量nextUglyNumber为选出的最小丑数。 5. 返回第n个丑数。 下面是根据上述步骤实现的Python函数: ```python def nthUglyNumber(n): if n <= 0: return 0 ugly_numbers = [1] i2 = i3 = i5 = 0 next_ugly = 1 for _ in range(1, n): next_ugly = min(ugly_numbers[i2] * 2, ugly_numbers[i3] * 3, ugly_numbers[i5] * 5) ugly_numbers.append(next_ugly) if next_ugly == ugly_numbers[i2] * 2: i2 += 1 if next_ugly == ugly_numbers[i3] * 3: i3 += 1 if next_ugly == ugly_numbers[i5] * 5: i5 += 1 return ugly_numbers[-1] ``` 以上代码定义了一个函数nthUglyNumber,通过动态规划的方式计算第n个丑数。该实现方式简洁高效,能够直接解决问题。 结合问题及辅助资料,建议在阅读《剑指Offer:丑数(Python)》一书时,特别关注其中关于动态规划问题解决策略的讲解。书中的题目解答将帮助你更深入地理解丑数问题,并掌握如何使用动态规划解决此类问题。当理解了动态规划的基础概念后,你可以尝试解决更复杂的编程挑战,进一步提升你的编程能力。 参考资源链接:[剑指Offer:丑数(Python)](https://wenku.csdn.net/doc/64530762fcc539136803da9f?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值