Python中多进程 多线程 单进程执行相同的IO操作和CPU 操作的时间 效率测试

这篇博客对比了Python中单线程、多线程和多进程在执行CPU密集型和IO密集型任务时的时间效率。测试结果显示,多进程在IO密集型任务上表现最优,而在CPU密集型任务上,多进程也优于多线程。
摘要由CSDN通过智能技术生成
#计算密集型
def count(x,y):
    c = 0
    while c < 6000000:
        c += 1
        x += 1
        y += 1
#IO密集函数
def write():
    f = open('test.txt','w')
    for i in range(1000000):
        f.write("hello world\n")
    f.close() 

def read():
    f = open('test.txt')
    lines = f.readlines()
    f.close()  

单线程cpu密集型

from test import *
import time

t = time.time()
for i in range(10):
    count(1,1)
print("Line cpu:",time.time() - t)    #7.5比多线程执行时间还短 

单线程IO密集型

from test import *
import time
t =time.time()
for i in range(10):
    write()
    read()
print("Line io:",time.time() - t)  #3.9

多线程cpu密集型

from test import *
import threading
import time
# 多线程cpu密集型
counts = []
t = time.time()
for x in range(10):
    th = thre
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值