recycleview吸顶

package com.example.recycleviewitemdecor;

import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Rect;
import android.view.View;

import androidx.annotation.NonNull;
import androidx.recyclerview.widget.LinearLayoutManager;
import androidx.recyclerview.widget.RecyclerView;

import org.jetbrains.annotations.NotNull;

//ZSG
//RecyclerView 重写了view的draw(Canvas c)方法,在draw方法里,super.draw(c)会调用onDraw方法。
//onDraw -> mItemDecorations.get(i).onDraw
//draw -> mItemDecorations.get(i).onDrawOver
//在测量的时候调用getItemDecorInsetsForChild -> mItemDecorations.get(i).getItemOffsets

public class StarDecoration extends RecyclerView.ItemDecoration {

    private final int groupHeaderHeight;
    private final Paint headerPaint;
    private final Paint textPaint;
    private final Rect textRect;

    public StarDecoration(Context context) {
        groupHeaderHeight = dp2px(context, 100);

        headerPaint = new Paint();
        headerPaint.setColor(Color.RED);

        textPaint = new Paint();
        textPaint.setTextSize(50);
        textPaint.setColor(Color.WHITE);

        textRect = new Rect();
    }

    private int dp2px(Context context, float value) {
        float density = context.getResources().getDisplayMetrics().density;
        return (int) (value * density * 0.5f);
    }


    @Override
    public void onDraw(@NonNull @NotNull Canvas c, @NonNull @NotNull RecyclerView parent, @NonNull @NotNull RecyclerView.State state) {
        super.onDraw(c, parent, state);
        if (parent.getAdapter() instanceof StartAdapter) {
            StartAdapter startAdapter = (StartAdapter) parent.getAdapter();
            int childCount = parent.getChildCount();
            int left = parent.getPaddingLeft();
            int right = parent.getWidth() - parent.getPaddingRight();

            for (int i = 0; i < childCount; i++) {
                View view = parent.getChildAt(i);

                int layoutPosition = parent.getChildLayoutPosition(view);
                boolean isHead = startAdapter.isGroupHeader(layoutPosition);
                if (isHead && view.getTop() - groupHeaderHeight - parent.getPaddingTop() >= 0) {
                    c.drawRect(left,view.getTop() - groupHeaderHeight,right,view.getTop(),headerPaint);
                    String groupName = startAdapter.getGroupName(layoutPosition);
                    textPaint.getTextBounds(groupName,0,groupName.length(),textRect);
                    c.drawText(groupName,left + 20,view.getTop() - groupHeaderHeight/2 + textRect.height()/2,textPaint);
                } else if (view.getTop() - groupHeaderHeight - parent.getPaddingTop() >= 0) {
                    c.drawRect(left,view.getTop() + 5,right,view.getTop(),headerPaint);
                }
            }
        }
    }

    @Override
    public void onDrawOver(@NonNull @NotNull Canvas c, @NonNull @NotNull RecyclerView parent, @NonNull @NotNull RecyclerView.State state) {
        super.onDrawOver(c, parent, state);
        if (parent.getAdapter() instanceof StartAdapter) {
            StartAdapter adapter = (StartAdapter) parent.getAdapter();
            //ZSG 找到可见区域内的Item的位置是用的getLayoutManager
            int firstVisibleItemPosition = ((LinearLayoutManager) parent.getLayoutManager()).findFirstVisibleItemPosition();
            //ZSG 通过位置找到ViewHolder
            View itemView = parent.findViewHolderForAdapterPosition(firstVisibleItemPosition).itemView;

            //ZSG 注意只有右边需要获取宽度 然后减去PaddingRight
            int left = parent.getPaddingLeft();
            int top =  parent.getPaddingTop();
            int right = parent.getWidth() - parent.getPaddingRight();

            if (adapter.isGroupHeader(firstVisibleItemPosition + 1)) {
                int bottom = Math.min(groupHeaderHeight, itemView.getBottom() - parent.getPaddingTop());
                c.drawRect(left, top, right, top + bottom, headerPaint);
                String groupName = adapter.getGroupName(firstVisibleItemPosition);
                textPaint.getTextBounds(groupName, 0, groupName.length(), textRect);
                c.drawText(groupName, left + 20, top + bottom - groupHeaderHeight / 2 + textRect.height() / 2, textPaint);
            } else {
                c.drawRect(left, top, right, top + groupHeaderHeight, headerPaint);
                String groupName = adapter.getGroupName(firstVisibleItemPosition);
                textPaint.getTextBounds(groupName, 0, groupName.length(), textRect);
                c.drawText(groupName, left + 20, top + groupHeaderHeight / 2 + textRect.height() / 2, textPaint);
            }
        }
    }

    @Override
    public void getItemOffsets(@NonNull @NotNull Rect outRect, @NonNull @NotNull View view, @NonNull @NotNull RecyclerView parent, @NonNull @NotNull RecyclerView.State state) {
        super.getItemOffsets(outRect, view, parent, state);
        if (parent.getAdapter() instanceof StartAdapter) {
            StartAdapter startAdapter = (StartAdapter) parent.getAdapter();
            int position = parent.getChildLayoutPosition(view);
            boolean isHeader = startAdapter.isGroupHeader(position);

            if (isHeader) {
                outRect.set(0, groupHeaderHeight, 0, 0);
            } else {
                outRect.set(0,5,0,0);
            }
        }
    }
}
recyclerView.addItemDecoration(new StarDecoration(this));
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值