找硬币 计蒜客 - T2959(递推 dp)

这篇博客探讨了一道关于最优化无限货币面值序列的问题,要求序列的第一个硬币面值为1,并且后续面值是前一个的倍数。目标是在购买n个物品时,寻找最小硬币数量。作者提出了状态转移方程来解决这个问题,通过动态规划策略减少硬币使用。代码中展示了如何计算最优解,并给出了实际的运行结果。
摘要由CSDN通过智能技术生成

题目链接

题意

  1. 有一个无穷货币面值序列:bi, 要求这个序列的第一个硬币的面值 b1 = 1, 我们可以自定 b2 及往后所有硬币的面值,当 i>=2 的时候且 bi 是 bi-1 的倍数,
  2. 现在我们有 n 个物品,每个物品的花费为:ai,求把所有的物品购买下来所需要的最小硬币个数是多少?在我们合理规划硬币的面值 bi 的情况下。

思路

  1. 挺不错的一题。。。虽然没有做出来 ╮(╯▽╰)╭
  2. 当时在考虑状态转移的时候,一直找不到 到底使用哪个状态进行转移的,
  3. 其实这题的状态转移是通过倍数关系去实现的,
  4. 我们设状态转移方程为:dp [i] 表示面值序列 b 中的最后一个最大的面值为 i 的时候买下 n 个物品的需要的最少硬币数量。
  5. 我们考虑 i 个的一个倍数 k, 设 i * j = k, 我们考虑当状态从 dp [i] 转 -> 移到 dp [k] 的时候,我们我们买物品的时候的发生的变化,
    1. 当最大面值为 i 的时候,我们买一个 k 花费的物品需要 j 个硬币,
    2. 而当最大面值为 k 的时候,我们买一个 k 花费的物品需要的 i 个硬币,
    3. 因此对于买一个 k 物品的价值相较于之前,可以可以 少使用 j-1 个硬币,
    4. 所以当 dp [i] 向 dp [k] 转移的时候的状态方程为: d p [ k ] = m i n ( d p [ k ] , d p [ i ] − 总 共 节 约 的 硬 币 数 量 ) dp [k] = min (dp [k], dp [i] - 总共节约的硬币数量) dp[k]=min(dp[k],dp[i]
    5. 具体请看代码把。

代码

#include <bits/stdc++.h>
using namespace std;
#define db  double
#define ll  long long
#define sc  scanf
#define pr  printf
#define fi  first
#define se  second
#define pb  push_back
#define m_p make_pair
#define Pir pair<int, int>
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
/*==========ACMer===========*/
const int N = 5e4 + 10;
int a[N];
int dp[N];


int main()
{
    int n; sc("%d", &n);
    int sum = 0, mx = 0;
    for (int i = 1; i <= n; i ++)
    {
        sc("%d", &a[i]);
        sum += a[i];
        mx = max(mx, a[i]);
    }

    memset(dp, inf, sizeof dp);
    dp[1] = sum;
    int ans = dp[1];
    for (int i = 1; i <= mx; i ++)
    {
        ans = min(ans, dp[i]);
        for (int j = 2; j * i <= mx; j ++)
        {
            int num = 0;
            for (int k = 1; k <= n; k ++)
                num += a[k] / (i * j);
            dp[i * j] = min(dp[i * j], dp[i] - num * (j - 1));
        }
    }
    pr("%d\n", ans);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值