KMP算法学习记录

朴素模式匹配算法 与 KMP

假设主串长度为m,模式串长度为n

  • 朴素模式匹配算法:时间复杂度O(mn),主串指针回溯
  • KMP算法:时间复杂度O(m+n),主串指针不回溯
    在这里插入图片描述

KMP算法代码

算法构成

  • 根据模式串T,求出next数组
  • 利用next数组进行匹配(主串指针不回溯)

在这里插入图片描述


// 顺序存储结构-动态数组(堆分配存储)
typedef struct{
    char *ch;
    int length;
} SString

// S:主串
// T:子串,即模式串
// next:子串的next数组
int Index_KMP(SString S,SString T,int next[]){
    int i = 1,j=1;
    while(i<=S.length&&j<=T.length){
        if(j==0||S.ch[i]=T.length){
            ++i;   // 继续比较后继字符
            ++j;
        }else{
            j = next[j]; // 模式串向右移动
        }
    }

    if(j>T.length){
        return i-T.length; // 匹配成功
    }else{
        return 0;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值