论文阅读笔记
文章平均质量分 75
主要是各种论文的精读和略读
古承风
写代码,但不做码农
展开
-
TransVPR论文阅读 (TransVPR: Transformer-based place recognition with multi-level attention aggregation)
知乎连接:TransVPR论文阅读原创 2022-01-24 23:33:23 · 593 阅读 · 0 评论 -
论文阅读 (图像地理定位)NetVLAD: CNN architecture for weakly supervised place recognition
[1] Arandjelovic R, Gronat P, Torii A等. NetVLAD: CNN architecture for weakly supervised place recognition[J]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016, 2016-Decem: 5297–5307.背景知识 典型场景图像地理定位的.原创 2021-04-13 11:01:07 · 2101 阅读 · 3 评论 -
论文阅读-场景图谱-图谱生成-Unbiased Scene Graph Generation from Biased Training
文章目录摘要引言背景问题与解决方案:问题解决方案:Graph R-CNN方法优势评估方法主要贡献Yang J, Lu J, Lee S等. Graph R-CNN for Scene Graph Generation[J]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, 1原创 2021-01-14 01:03:44 · 715 阅读 · 0 评论 -
论文阅读-场景图谱-图谱生成-Graph R-CNN for Scene Graph Generation
文章目录摘要引言Yang J, Lu J, Lee S等. Graph R-CNN for Scene Graph Generation[J]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, 11205 LNCS: 690–706.摘要一种新的场景图谱生成模型Gra原创 2021-01-13 20:27:10 · 1137 阅读 · 1 评论 -
论文阅读-场景图谱-图谱生成:Factorizable Net: An Efficient Subgraph-based Framework for Scene Graph Generation
文章目录摘要引言[1] Li Y, Ouyang W, Zhou B等. Factorizable Net: An Efficient Subgraph-Based Framework for Scene Graph Generation[J]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatic原创 2021-01-13 19:04:12 · 709 阅读 · 0 评论 -
论文阅读笔记-场景图谱-图谱生成:Scene Graph Generation from Objects, Phrases and Region Captions
文章目录摘要引言正文部分ConclusionnLi Y, Ouyang W, Zhou B等. Scene Graph Generation from Objects, Phrases and Region Captions[J]. Proceedings of the IEEE International Conference on Computer Vision, 2017, 2017-October: 1270–1279.摘要目标检测 、 场景图谱生成 和 region captionin原创 2021-01-13 16:41:03 · 1922 阅读 · 2 评论 -
论文阅读笔记 : Image retrieva using scene graphs
文章目录摘要Introduction背景提出和解决问题正文部分结论Johnson J, Krishna R, Stark M et al. Image retrieval using scene graphs[A]. Proceedings of the IEEE conference on computer vision and pattern recognition[C]. 2015: 3668–3678.关键词scene graphs图像检索摘要利用 scene graph原创 2021-01-13 15:15:37 · 692 阅读 · 0 评论 -
图像基础知识:二值图像
定义二值图像是一种特殊的灰度图像,它的灰度级只有两种:黑色和白色,中间没有过滤值。特性1:需要的存储空间少这样的好处是每个像素只需要 log22=1bitlog_2 2 = 1bitlog22=1bit存储空间即可表示一个像素。对比一下,传统的图像就算是灰度图像至少也有256个灰度级。它表示一个像素需要log2256=8bitlog_2 256 = 8bitlog2256=8bit 表示一个像素。所以,它需要的存储空间很小。特性2: 利用稠密度表现轮廓这个图远看是个人,近看就是稠密排原创 2021-01-11 10:37:39 · 6619 阅读 · 0 评论 -
科研怎么入门?一文就够了。
入门科研领域 论文收集与阅读须知首先,我们需要学会下载文献,已知文献网址(国际搜索引擎:Google,Bing等直接搜索文献,即可得到文献网址),可以直接利用下文中的方法下载文献:sci-hub:一个神奇的免费下载文献的网站(使用技巧)背景从一个科研小白到不是那么白的小白,在佛系导师的带领下,这个过程我经历了大半年。近期对象磕盐入门,特将自己浅薄的经验写出来,以供查询,如有错误纰漏,欢迎批评指正。以我对象的场景为例,假如导师比较佛系,让你自己找一个领域,自己找文章,自己整理出文章的发展脉络。这原创 2020-10-05 17:12:23 · 4364 阅读 · 4 评论