1.基本定义
- #include<stdio.h>
- //顺序表:1.使用动态分配的一维数组
- // 2.使用静态分配的一维数组
- //本实例使用静态分配
- #define LIST_INIT_SIZE 100
- typedef int ElemType;
- typedef struct SqList{
- ElemType data[LIST_INIT_SIZE];
- int len;
- }SqList;
2.创建线性表和打印输出线性表
- //创建一个长度为n的顺序线性表
- void createSqList(SqList &L, int n){
- printf("请输入%d个数:\n", n);
- for(int i = 0; i < n; i++){
- scanf("%d",&L.data[i]);
- }
- L.len = n;
- //printSqList(L);
- }
- //打印输出顺序线性表
- void printSqList(SqList L){
- printf("打印线性表:");
- for(int i = 0; i < L.len; i++){
- printf("%d ",L.data[i]);
- }
- printf("\n");
- }
[cpp]
view plain
co
- void main(){
- //初始化一个空的线性表
- SqList L;
- L.len=0;
- createSqList(L, 5);//创建一个线性表
- printSqList(L);
- }
3.插入操作
- //在第i(1<=i<=n)个元素之前插入一个元素,需要向后移动n-i+1个元素,
- //在最后插入则不需要移动任何元素,可供插入的位置有n+1个,
- //从后往前找插入的位置,其中i表示位序,第i个元素的下标i-1,i的范围是1~n+1
- //时间复杂度:O(n)
- void insertSqList(SqList &L,int i, ElemType e){
- if(i>L.len+1||i<1){
- printf("插入位置参数不合法");
- }else if(L.len >= LIST_INIT_SIZE){
- printf("表已满,无法差插入");
- }else{
- int j = L.len-1;
- for(j;j>=i-1;j--){
- L.data[j+1] = L.data[j];//从后往前移动元素
- }
- L.data[i-1] = e;
- L.len++;
- }
- }
- 演示:
- void main(){
- //初始化一个空的线性表
- SqList L;
- L.len=0;
- createSqList(L, 5);//创建一个线性表
- printSqList(L);
- //完成插入功能
- printf("您要插入的数据和位置(1~%d)(如:在第2个位置插入10则输入:10,2):",L.len);
- int elem, pos;
- scanf("%d,%d",&elem,&pos);
- insertSqList(L,pos,elem);
- printSqList(L);
- }
[cpp] view plain copy
- //创建一个线性表实际上也是不断往一个空表里插入元素的过程
- //所以可利用插入算法实现线性表的创建
- void createUseInsertSqList(SqList &L, int n){
- printf("请输入%d个数:\n", n);
- int x;
- for(int i = 0; i < n; i++){
- scanf("%d", &x);
- insertSqList(L,i+1,x);
- }
- L.len = n;
- }
- 演示:
- void main(){
- //初始化一个空的线性表
- SqList L;
- L.len=0;
- /*
- createSqList(L, 5);//创建一个线性表
- printSqList(L);
- */
- createUseInsertSqList(L, 5);
- printSqList(L);
- }
4.删除操作
- //删除第i(1<=i<=L.len)个元素,并用e返回其值
- //时间复杂度:O(n)
- void delSqList(SqList &L, int i, ElemType &e){
- if(i>L.len||i<1){
- printf("删除位置参数不合法");
- }
- int j = i-1;//j是要被删除元素的下标
- e = L.data[j];
- printf("删除的第%d位置的数据是%d\n",i,e);
- for(j;j<L.len-1;j++){
- L.data[j] = L.data[j+1];
- }
- L.len--;
- 演示:
- void main(){
- //初始化一个空的线性表
- SqList L;
- L.len=0;
- createSqList(L, 5);//创建一个线性表
- printSqList(L);
- //完成删除功能
- printf("您要删除的数据的位置(如:要删除第2个位置的数据则输入(1~%d):2):",L.len);
- int pos;
- ElemType elem;
- scanf("%d",&pos);
- delSqList(L,pos,elem);
- printSqList(L);
- }
5.两个线性表的merge操作
- //已知线性表La和Lb中的数据元素按值非递减排列,现要求将La和Lb归并为一个新的线性表Lc,且Lc中的数据元素仍然按值非递减有序排列
- //实现:为保持Lc的非递减有序,则当a<=b时,c=a;当a>b时,c=b
- //时间复杂度:O(La.len+Lb.len)
- //实例:La=(3,5,8,11),Lb=(2,6,8,9,11,15,20),Lc=(2,3,5,6,8,8,9,11,11,15,20),注意并没有去重,只是做了合并
- void mergeSqList(SqList La, SqList Lb, SqList &Lc){
- int i=0, j=0;
- Lc.len=La.len+Lb.len;//初始化Lc
- int k =0;
- while(i<La.len&&j<Lb.len){
- if(La.data[i]<=Lb.data[j]){
- Lc.data[k]=La.data[i];
- i++;
- k++;
- }else{
- Lc.data[k]=Lb.data[j];
- j++;
- k++;
- }
- }
- while(i<La.len){
- Lc.data[k]=La.data[i];
- i++;
- k++;
- }
- while(j<Lb.len){
- Lc.data[k]=Lb.data[j];
- j++;
- k++;
- }
- }
- 演示:
- void main(){
- //完成merge操作
- SqList La, Lb, Lc;
- //初始化线性表
- La.len = Lb.len =Lc.len = 0;
- printf("创建线性表La:\n");
- createSqList(La, 4);//创建线性表La
- printSqList(La);
- printf("创建线性表Lb:\n");
- createSqList(Lb, 7);//创建线性表Lc
- printSqList(Lb);
- mergeSqList(La, Lb, Lc);
- printf("merge以后得到的Lc:");
- printSqList(Lc);
- }
6.两个线性表的union操作
- //利用两个线性表La,Lb分别表示两个集合A和B(线性表中的数据元素即为集合元素),现要求一个新的集合A=AUB
- //实现:扩展线性表La,即从Lb中依次取得每个数据元素,并依值在La中进行查访,若在La中不存在则插入之。
- //实例:La=(3,5,8,11),Lb=(2,6,8,9,11,15,20),union以后的La=(3,5,8,11,2,6,9,15,20),La.len=9,注意有去重,但不care求并集以后的顺序
- //时间复杂度:O(La.len * Lb.len)
- int locateElem(SqList L, ElemType e){//查找线性表L中第一个与数据元素e相等(也可以是其他比较方法)的元素的位置(1~L.len),
- //若没找到则返回0,找到则返回位序,时间复杂度:O(L.len)
- int i = 1;//i表示位序
- while(i<=L.len&&L.data[i-1]!=e){
- i++;
- }
- if(i<=L.len)
- return i;
- else
- return 0;
- }
- void unionSqList(SqList &La, SqList Lb){
- for(int i = 0; i < Lb.len; i++){
- ElemType e = Lb.data[i];
- if(!locateElem(La, e)){//e在La中不存在//O(La.len)
- insertSqList(La,La.len+1, e);//由于总在表尾插入,所以插入操作的时间复杂度与表长无关
- }
- }
- }
- 演示:
- void main(){
- //完成union操作
- SqList La, Lb;
- //初始化线性表
- La.len = Lb.len = 0;
- printf("创建线性表La:\n");
- createSqList(La, 4);//创建线性表La
- printSqList(La);
- printf("创建线性表Lb:\n");
- createSqList(Lb, 7);//创建线性表Lc
- printSqList(Lb);
- unionSqList(La, Lb);
- printSqList(La);
- printf("La的长度为%d\n",La.len);
注意:将merge第一个循环体中以switch语句代替if语句,即分出3种情况,当a=b时,只将两者之一插入到Lc中,则此时算法完成的操作和union完全相同,而时间复杂度却不同,其原因有二:
1.La,Lb中的元素都是依值递增(同一集合中元素不等),则对Lb中每个元素,不需要再La中从表头至表尾进行全程搜索
2.由于用新表Lc表示“并集”,则插入操作实际上借助“复制”完成,而无须因插入导致移动一系列元素
由此可见,若以线性表表示集合并进行集合的各种运算,应先对表中的元素进行排序,则可降低集合运算的时间复杂度