07 ,梯度下降 : 总结,学习率,步长的大小控制

本文深入解析梯度下降法的基本原理,包括求解梯度的方法、如何确定下降方向及步长选择的重要性。探讨了学习率的定义、理想取值范围及其在不同阶段的调整策略,帮助读者理解其在机器学习中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 ,梯度下降 : 总结

  1. 求梯度 : 偏导数向量和
    作用 : 确定梯度下降的方向
  2. 步长 :每次下降多少距离

2 ,学习率 :

  1. 定义 : 就是上面说的步长,每次移动的距离
  2. 大小 : 最好是小一点,不适合过大
    1 ,小 : 走得慢,效率低
    2 ,大 : 走得快,计算的结果不准
  3. 学习原则 :
    1 ,小学习率 : 步长小一点
    2 ,大学习次数 : 学习的次数多一点

3 ,学习率的变动 :

  1. 大步找谷底 :
  2. 范围内大步靠近 :
    在这里插入图片描述
  3. 极值范围内 : 小步移动
    在这里插入图片描述

4 ,学习率 : 常用取值

  1. 常用值 :从我做过的案例来看,0.01 比较适中
    0.01
  2. 千万不可以 : 太大
    如果步长太大,就看不到完整的数据轮廓,甚至有可能错过极值点
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值