1 ,梯度下降 : 总结
- 求梯度 : 偏导数向量和
作用 : 确定梯度下降的方向 - 步长 :每次下降多少距离
2 ,学习率 :
- 定义 : 就是上面说的步长,每次移动的距离
- 大小 : 最好是小一点,不适合过大
1 ,小 : 走得慢,效率低
2 ,大 : 走得快,计算的结果不准 - 学习原则 :
1 ,小学习率 : 步长小一点
2 ,大学习次数 : 学习的次数多一点
3 ,学习率的变动 :
- 大步找谷底 :
- 范围内大步靠近 :
- 极值范围内 : 小步移动
4 ,学习率 : 常用取值
- 常用值 :从我做过的案例来看,0.01 比较适中
0.01 - 千万不可以 : 太大
如果步长太大,就看不到完整的数据轮廓,甚至有可能错过极值点