Nesterov加速梯度下降:革命性的算法,超越传统梯度下降

Nesterov加速梯度下降(NAG)是1983年提出的优化算法,用于改进梯度下降法,通过动量项加速收敛。NAG在计算梯度时考虑了之前更新的方向,使参数更新更有效,尤其适用于深度学习中的神经网络训练。NAG算法的更新规则与传统梯度下降和动量方法不同,能更高效地利用梯度信息,提高收敛速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Nesterov加速梯度下降(Nesterov Accelerated Gradient,简称NAG)是一种优化算法,由Yurii Nesterov在1983年提出。它是一种改进的梯度下降法,通过引入一个“动量”项,使得参数更新在梯度方向上有一定的“惯性”,从而加速收敛。NAG算法在深度学习中被广泛应用,尤其是在训练深度神经网络时,NAG算法往往能够比传统的梯度下降法更快地找到最优解。

NAG算法的基本思想是在计算梯度时,不仅考虑当前位置,还考虑之前的更新方向。具体来说,传统的梯度下降法在每一步都是根据当前位置的梯度来更新参数,而NAG算法则是根据当前位置和之前的更新方向的加权平均来计算梯度,然后再更新参数。这样做的好处是,如果之前的更新方向和当前的梯度方向一致,那么NAG算法的更新步长会比传统的梯度下降法大,从而加速收敛;如果之前的更新方向和当前的梯度方向不一致,那么NAG算法的更新步长会比传统的梯度下降法小,从而减少震荡。

NAG算法的具体步骤如下:

  1. 初始化参数θ和动量v。

  2. 在每一步,首先计算“预测”的参数值θ’ = θ - γv,其中γ是动量因子,通常取值为0.9。

  3. 然后,计算在θ’处的梯度g = ∇f(θ’)。

  4. 更新动量v =

评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值