【一】 定义(离散型)
- 随机变量 X 的概率分布为:
P ( X = k ) = e − λ λ k k ! s . t k = 0 , 1 , 2 , . . . , λ > 0 P ( X = k ) = \frac { e ^ { - \lambda } \lambda ^ { k } } { k ! } \;\;\;\; s.t \;\; k=0,1,2,...,\;\; \lambda > 0 P(X=k)=k!e−λλks.tk=0,1,2,...,λ>0
- 表达方式(服从参数为
λ
\lambda
λ 的泊松分布)
X ∼ π ( λ ) \bm \red {X \sim \pi ( \lambda )} X∼π(λ)
【二】 近似(二项分布)
- 二项分布 与 泊松分布 可以近似,条件如下:
当 n > 10 , p < 0.1 时 : C n k p k ( 1 − p ) n − k ≈ e − λ λ k k ! s . t λ = n p 当 \; n>10,p<0.1 \; 时:\;\;\; C _ { n } ^ { k } \; p ^ { k } ( 1 - p ) ^ { n - k }\approx \frac { e ^ { - \lambda } \lambda ^ { k } } { k ! } \;\;\;\; s.t \;\; \lambda=np 当n>10,p<0.1时:Cnkpk(1−p)n−k≈k!e−λλks.tλ=np
【三】 经典题目(必做)
- 【题目 1】 设某汽车停靠站候车人数
X
X
X:
π
(
λ
)
,
λ
=
4.5
\pi ( \lambda ) ,\lambda = 4.5
π(λ),λ=4.5
【 至 少 2 人 候 车 的 概 率 】 P ( x ≥ 2 ) = 1 − P ( x = 0 ) − P ( x = 1 ) = 1 − e − 4.5 ⋅ ( 4.5 ) 0 0 ! − e − 4.5 ⋅ 4 ⋅ 5 1 1 ! 【至少 2 人候车的概率】\;\; P ( x \geq 2 ) = 1 - P ( x=0 ) - P(x=1) =1 - \frac { e ^ { - 4.5 } \cdot ( 4.5 ) ^ { 0 } } { 0 ! } - \frac { e ^ { - 4.5 } \cdot 4 \cdot 5 ^ { 1 } } { 1 ! } 【至少2人候车的概率】P(x≥2)=1−P(x=0)−P(x=1)=1−0!e−4.5⋅(4.5)0−1!e−4.5⋅4⋅51
【
已
知
至
少
2
人
候
车
,
恰
有
2
人
候
车
的
概
率
】
P
(
x
=
2
∣
x
≥
2
)
=
P
(
x
=
2
)
P
(
x
≥
2
)
【已知至少 2 人候车,恰有 2 人候车的概率】\;\; P ( x = 2 | x \geq 2 ) = \frac { P ( x = 2 ) } { P ( x \geq 2 ) }
【已知至少2人候车,恰有2人候车的概率】P(x=2∣x≥2)=P(x≥2)P(x=2)