【MATH】_03_泊松分布


 


 

【一】 定义(离散型)

 

  • 随机变量 X 的概率分布为:
     
    P ( X = k ) = e − λ λ k k !          s . t      k = 0 , 1 , 2 , . . . ,      λ > 0 P ( X = k ) = \frac { e ^ { - \lambda } \lambda ^ { k } } { k ! } \;\;\;\; s.t \;\; k=0,1,2,...,\;\; \lambda > 0 P(X=k)=k!eλλks.tk=0,1,2,...,λ>0

 

  • 表达方式(服从参数为 λ \lambda λ 的泊松分布)
     
    X ∼ π ( λ ) \bm \red {X \sim \pi ( \lambda )} Xπ(λ)

 


 

【二】 近似(二项分布)

 

  • 二项分布泊松分布 可以近似,条件如下:
     
    当    n > 10 , p < 0.1    时 :        C n k    p k ( 1 − p ) n − k ≈ e − λ λ k k !          s . t      λ = n p 当 \; n>10,p<0.1 \; 时:\;\;\; C _ { n } ^ { k } \; p ^ { k } ( 1 - p ) ^ { n - k }\approx \frac { e ^ { - \lambda } \lambda ^ { k } } { k ! } \;\;\;\; s.t \;\; \lambda=np n>10p<0.1:Cnkpk(1p)nkk!eλλks.tλ=np

 


 

【三】 经典题目(必做)

 

  • 【题目 1】 设某汽车停靠站候车人数 X X X π ( λ ) , λ = 4.5 \pi ( \lambda ) ,\lambda = 4.5 π(λ)λ=4.5
     
    【 至 少 2 人 候 车 的 概 率 】      P ( x ≥ 2 ) = 1 − P ( x = 0 ) − P ( x = 1 ) = 1 − e − 4.5 ⋅ ( 4.5 ) 0 0 ! − e − 4.5 ⋅ 4 ⋅ 5 1 1 ! 【至少 2 人候车的概率】\;\; P ( x \geq 2 ) = 1 - P ( x=0 ) - P(x=1) =1 - \frac { e ^ { - 4.5 } \cdot ( 4.5 ) ^ { 0 } } { 0 ! } - \frac { e ^ { - 4.5 } \cdot 4 \cdot 5 ^ { 1 } } { 1 ! } 2P(x2)=1P(x=0)P(x=1)=10!e4.5(4.5)01!e4.5451

 
【 已 知 至 少 2 人 候 车 , 恰 有 2 人 候 车 的 概 率 】      P ( x = 2 ∣ x ≥ 2 ) = P ( x = 2 ) P ( x ≥ 2 ) 【已知至少 2 人候车,恰有 2 人候车的概率】\;\; P ( x = 2 | x \geq 2 ) = \frac { P ( x = 2 ) } { P ( x \geq 2 ) } 22P(x=2x2)=P(x2)P(x=2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值