推荐系统
零一睡不醒
人生苦短
展开
-
TensorFlow2.0 实现FM
一、数据集Criteo : 2014年kaggle 广告点击率预估比赛数据集该数据集包含约4500万条记录。有13个数值特征和26个类别特征。 这些列以制表符分隔,并带有以下格式:<int feat 1> ... <int feat 13> <cate feat 1> ... 该数据集可从http://labs.criteo.com/2014/02/...原创 2020-01-10 13:59:05 · 4477 阅读 · 2 评论 -
推荐系统中的NDCG
说到NDCG就需要从CG开始说起。CG(cumulative gain,累计增益)可以用于评价基于打分/评分的个性推荐系统。假设我们推荐k个物品,这个推荐列表的CGk计算公式如下:CGk=∑ikreliCG_k=\sum _i^k rel_iCGk=i∑kreli.relirel_ireli 表示第kkk个物品的相关性或者评分。假设我们共推荐kkk个文档,relirel_ireli...原创 2019-10-18 14:12:11 · 2690 阅读 · 0 评论 -
推荐系统中的矩阵分解
一、传统的奇异值分解SVDSVD分解要求矩阵是稠密的,也就是说矩阵的所有位置不能有空白。有空白时我们的MM是没法直接去SVD分解的。大家会说,如果这个矩阵是稠密的,那不就是说我们都已经找到所有用户物品的评分了嘛,那还要SVD干嘛! 的确,这是一个问题,传统SVD采用的方法是对评分矩阵中的缺失值进行简单的补全,比如用全局平均值或者用用户物品平均值补全,得到补全后的矩阵。接着可以用SVD分解并降维...原创 2019-09-30 15:32:29 · 437 阅读 · 0 评论 -
协同过滤原理和python实现——基于movielens 100k数据集
文章内容和代码来自这篇博客:one-一个一、基于用户的协同过滤Pu,i 用户u和电影i Rv,i 用户v对电影i的评分 Su,v 用户u和用户v的相似度可以看出,基于用户的协同过滤的思想:求出用户之间的相似度,具体到每部电影i的时候,遍历所有用户,相似度乘以用户对该电影的打分累加求和,并以用户相似度之和作为分母,得到用户u对电影i的喜好程度。二、基于物品的协同过滤...原创 2019-08-01 14:24:12 · 9703 阅读 · 1 评论 -
一个推荐系统的实现
一个Kaggle题目 https://www.kaggle.com/c/kddcup2012-track1?tdsourcetag=s_pcqq_aiomsg一、数据集2220895个用户 + 6095 Item 73209277个训练样本,34910937个测试样本a) 训练集 rec_log_train.txt : UserId-ItemId-Result(1or-1)-ti...原创 2019-05-06 11:52:34 · 909 阅读 · 0 评论 -
DeepFM 参数理解(二)
原文: https://www.sohu.com/a/251772910_633698什么是CTR预估CTR(Click-Through-Rate)即点击通过率,是互联网广告常用的术语,指网络广告(图片广告/文字广告/关键词广告/排名广告/视频广告等)的点击到达率,即该广告的实际点击次数除以广告的展现量。CTR是衡量互联网广告效果的一项重要指标。CTR预估数据特点:输入中包含类...转载 2019-05-05 17:52:58 · 6303 阅读 · 1 评论 -
DeepFM 中参数的理解
上图为Sparse Feature 层到 Dense Embedding 层的神经元连接示意图。1、每个圆点代表一个神经元,神经元本身是没有数值的,我们需要知道的是Sparse Feature 到 Embedding 层之间连线的权重,这个权重就是所谓的Embedding Vector。2、一共有m个field,每个field对应k个嵌入维数,所以嵌入层神经元的个数为m*k。3、...原创 2019-04-24 15:41:08 · 3061 阅读 · 0 评论 -
DeepFM python实现笔记
理论和代码:https://www.jianshu.com/p/71d819005fed一、DeepFM数据集的构造。给定的原始数据集为: [458044 rows x 39 columns]将其转换为DeepFM输入层要求的格式: feature_index feature_value1、对于连续型数据,每一列作为一个索引值,对应的值为原始值。对于类别数据每个类别作为一个索...原创 2019-04-08 17:41:00 · 1755 阅读 · 0 评论 -
推荐系统随想
1、推荐系统算法工程师存在的意义https://www.cnblogs.com/flclain/p/4211685.html原创 2019-04-22 11:46:09 · 150 阅读 · 0 评论 -
推荐系统
1.推荐算法汇总https://www.jianshu.com/p/6b246f5970c92 排序算法我们把推荐问题建模成一个“超大规模分类”问题,即在时刻T和上下文C的情况下,为用户U在文章库V中精准的预测出文章I的类别,这里召回已经帮我们解决了超大规模的问题,而排序的核心就是拟合一个用户对内容满意度的函数y=Fun(U, I, C),这个函数需要输入的就是这三个维度的特征:用户信...原创 2019-04-11 17:06:00 · 224 阅读 · 0 评论