在HDFS中,一个bolck块的默认大小是128M,当一个文件的大小小于一个block的大小,则被认为是小文件
危害:
1、NameNode需要的内存大大增大,增加NameNode压力,这样会限制了集群的扩展。
2、在HDFS中,小文件的读写处理速度要远远小于大文件
3、Hive中,小文件会开很多map,一个map开一个JVM去执行,所以这些任务的初始化,启动,执行会浪费大量的资源,严重影响性能。
Hive中小文件的预防措施有:
1.使用Sequencefile作为表存储格式,不要用textfile,在一定程度上可以减少小文件。
2.减少reduce的数量(可以使用参数进行控制)。
3.少用动态分区,用时记得按distribute by分区。
设置map输入合并小文件的相关参数:
//每个Map最大输入大小(这个值决定了合并后文件的数量)
set mapred.max.split.size=256000000;
//一个节点上split的至少的大小(这个值决定了多个DataNode上的文件是否需要合并)
set mapred.min.split.size.per.node=100000000;
//一个交换机下split的至少的大小(这个值决定了多个交换机上的文件是否需要合并)
set mapred.min.split.size.per.rack=100000000;
//执行Map前进行小文件合并
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
设置map输出和reduce输出进行合并的相关参数:
//设置map端输出进行合并,默认为true
set hive.merge.mapfiles = true
//设置reduce端输出进行合并,默认为false
set hive.merge.mapredfiles = true
//设置合并文件的大小
set hive.merge.size.per.task = 256*1000*1000
//当输出文件的平均大小小于该值时,启动一个独立的MapReduce任务进行文件merge。
set hive.merge.smallfiles.avgsize=16000000
Spark中的小文件问题:
数据采集阶段: 配置合理的flume参数等
数据清洗: 使用coalesce或repatition设置合理的分区数
使用hbase保存数据
合并小文件程序