【题目】
给定一个N×M的整型矩阵matrix和一个正数K,matrix的每一行每一列都是排好序的。实现一个函数,判断K是否在matrix中。
例如:
0, 1, 2, 5
2, 3, 4, 7
4, 4, 4, 8
5, 7, 7, 9
如果K为7,返回True;如果K为6,返回False。
要求时间复杂度O(N+M),空间复杂度O(1)。
【基本思路】
从第一行最后一列位置(arr[i][j])开始,如果等于K值,直接返回True;如果arr[i][j] < K,向下移动位置,即 i += 1,再判断此时arr[i][j]是否等于K;如果arr[i][j] > K,向左移动位置,即 j -= 1,再判断此时是否等于K。如果遍历的位置超出了矩阵的范围,返回False。
同样的思路,从左下角的位置开始移动也可以。
下面是使用python3.5实现的代码:
def isContains(mat, k):
if mat == None or len(mat) == 0 or len(mat[0]) == 0:
return False
row = 0
col = len(mat[0]) - 1
while row < len(mat) and col >= 0:
if mat[row][col] == k:
return True
elif mat[row][col] < k:
row += 1
else:
col -= 1
return False