-
来源
-
标注工具
-
Labelme
-
-
数据集
-
YOLO
-
MS COCO
-
-
Labelme格式
-
图片示例
-

-
标注示例
-
目标检测框:左上角 右下角
-
关键点:必须且只能落入一个框中
-
多段线:描绘检测目标轮廓的框线
-
相当于实例分割
-
-

- YOLO格式
- MS COCO格式
- YOLOv8-pose
-
模型输出:预测框和关键点
-
预测框
-
-


- 关键点
-
评价指标
-
Precision
-
Recall
-
F1-Score
-
-
MMPose实战(以三角板关键点检测项目为例)
-
安装MMCV、MMPose和MMDetection
-
通过命令行和Python API两种方式 利用预训练模型进行预测
-
下载三角板关键点检测数据集
-
三角板目标检测
-
配置config文件
-
训练RTMDet和Faster R-CNN
-
可视化训练日志
-
模型权重文件精简转换
-
预测
-
-
三角板关键点检测
-
配置config文件
-
训练RTMPose
-
可视化训练日志
-
模型权重文件精简转换
-
预测
-
-
模型部署
-
安装MMDeploy
-
Pytorch模型转ONNX模型
-
环境配置
-
通过单张图像 视频或摄像头进行预测
-
-