底层视觉与MMEditing

文章介绍了超分辨率任务,即从低分辨率图像恢复高分辨率图像,以增强细节和节省带宽。讨论了传统稀疏编码方法的局限性和深度学习方法的进步,如SRCNN、FastSRCNN,以及基于生成对抗网络的SRGAN和ESRGAN。这些模型利用卷积和损失函数(如均方误差和感知损失)来提升图像质量。FastSRCNN通过避免插值提高了计算效率,而SRGAN则致力于生成更真实的图像内容。
摘要由CSDN通过智能技术生成
  • 来源
  • 超分辨率任务
    • 定义
      • 从低分辨率图像重构高分辨率图像
    • 目标
      • 提高图像分辨率
      • 恢复图像细节 产生真实内容
    • 应用场景
      • 照片修复
      • 节约传输图像耗费的带宽
      • 医疗 卫星 监控 空中监察
    • 类型
      • 多图超分
        • 常用于遥感影像
      • 单图超分
        • 不适定问题
        • 高分辨率图像不能唯一确定
  • 经典方法:稀疏编码(Sparse Coding)
    • 思想:通过无监督学习方法 构建一组“基图像块” 使图像可以通过少数基图像块线性组合而成
    • 方法:
    • 缺点:训练和推理阶段都很耗时
      • 基于字典求解系数非常复杂
  • 深度学习方法:
    • 基于卷积的模型
      • SRCNN
      • Fast SRCNN
    • 基于生成对抗网络的模型
      • SRGAN
      • ESRGAN
  • 损失函数
    • 均方误差:比较恢复图像和原始图像之间的每个像素值,然后计算均方误差
    • 感知损失:通过预训练模型比较恢复图像和原始图像的特征图,然后计算均方误差

  • 评价指标:
    • 峰值信噪比(Peak signal-to-noise ratio, PSNR)
  • SRCNN
    • 意义:首个基于深度学习的超分辨率算法
    • 模型结构
    • 物理意义
      • 第一层:提取图像块低层次局部特征
      • 第二层:对低层次局部特征进行非线性变换,得到高层次特征
      • 第三层:组合邻域内的高层次特征,恢复高清图像
      • 整个方法流程和稀疏编码方法一一对应
    • 训练
      • 准备数据:将ImageNet数据集中的图像作为高分图像,先降采样再插值升采样得到低分图像
      • 损失函数:MSE
      • 优化方法:SGD
    • 问题
      • 先对低分图像进行插值,再在高分辨率下进行卷积运算
        • 插值不产生额外信息,因而产生一定冗余计算
      • 模型推理速度较慢,达不到实时的标准
  • Fast SRCNN
    • 改进:不使用插值,直接在低分图像上进行卷积运算,降低运算量
    • 模型结构:
      • 通过1x1卷积层对特征图通道进行压缩
        • 减少特征映射过程中的计算量
      • 通过转置卷积层恢复图像分辨率
    • 优点:
      • 基于CPU进行推理时,速度可以达到实时的要求
      • 处理不同上采样倍数时,只需要微调反卷积的权重,固定特征映射层的参数
  • SRResNet
  • SRGAN
  • ESRGAN
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值