[Acwing] 最大子序和 单调队列优化

这篇博客介绍了如何使用单调队列优化算法来高效地维护一个固定大小k的滑动窗口内的最大值和最小值。通过前缀和和单调队列,可以在O(n)的时间复杂度内解决这个问题。文章提供了详细的思路解析和代码实现,展示了如何在区间和的基础上找到最大值和最小值,并避免了暴力枚举的方法。
摘要由CSDN通过智能技术生成

前言

本题链接 :
滑动窗口 : 维护一个大小为 k k k 的 区间的 最大值和 最小值

思路

f [ i ] f[i] f[i]表示 以 a [ i ] a[i] a[i]结尾,长度不超过 m m m最大值

对于区间和 : 我们可以用前缀和维护 s u m [ r ] − s u m [ l ] sum[r] - sum[l] sum[r]sum[l]

因此暴力做法 可以对于每一个 i i i我们都枚举左端点 :

f [ i ] = m a x ( S [ i ] − S [ j ] ) ( 1 < = i − j < = m ) f[i] = max(S[i] - S[j]) (1<=i-j<=m) f[i]=max(S[i]S[j])(1<=ij<=m)
即 :
f [ i ] = S [ i ] − m i n S [ j ] ( 1 < = i − j < = m ) f[i] =S[i] - min S[j] (1<=i-j<=m) f[i]=S[i]minS[j](1<=ij<=m)

因此我们可以通过单调队列优化

即 :
从前往后,记录一个长度不超过 m m m的区间最小值

CODE
#include <bits/stdc++.h>
using namespace std;
const int N = 3e5+10,INF =1e9;
int n,m;
int s[N],q[N];

void solve()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    cin>>s[i],s[i]+=s[i-1];

    int res = -INF;
    int hh = 0 ,tt = 0 ;

    for(int i=1;i<=n;i++)
    {
        if(q[hh]<i-m) hh++;
        
        res = max(res,s[i]-s[q[hh]]);

        while(hh<=tt && s[q[tt]] >= s[i])
        tt--;

        q[++tt] = i;
    }
    cout<<res<<endl;
}

int main()
{
    ios::sync_with_stdio(false);
    solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值