hdu2546 普通01背包,只是重量跟价值相同罢了,完全背包就只是把里面那个逆循环正过来就行
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn = 1e3 + 5;
int dp[maxn],a[maxn];
int main()
{
int n, m, sum, max1;
while(~scanf("%d",&n) && n)
{
memset(dp,0,sizeof(dp));
for(int i = 1; i <= n; i++)
scanf("%d",&a[i]);
scanf("%d",&m);
if(m < 5) {printf("%d\n",m); continue;}
sort(a+1,a+1+n);
m -= 5;
for(int i = 1; i < n; i++)
for(int j = m; j >= a[i]; j--)
{
dp[j] = max(dp[j],dp[j-a[i]]+a[i]);
}
printf("%d\n",m-dp[m]+5-a[n]);
}
return 0;
}
hdu 2191 多重背包模板(普通的)
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
const int maxn = 105;
int dp[maxn], v[maxn], w[maxn], c[maxn];
int main()
{
int C, n, m;
scanf("%d",&C);
while(C--)
{
scanf("%d%d",&n,&m);
for(int i = 1; i <= m; i++)
scanf("%d%d%d",&v[i],&w[i],&c[i]);
memset(dp,0,sizeof(dp));
for(int i = 1; i <= n; i++)
{
for(int k = 1; k <= c[i]; k++) //有c[i]个就循环c[i]次呗
{
for(int j = n; j >= v[i]; j--)
{
dp[j] = max(dp[j],dp[j-v[i]] + w[i]);
}
}
}
printf("%d\n",dp[n]);
}
return 0;
}
先说下 01 背包,有n 种不同的物品,每个物品有两个属性
size 体积,value 价值,现在给一个容量为 w 的背包,问
最多可带走多少价值的物品。
int f[w+1]; //f[x] 表示背包容量为x 时的最大价值
for (int i=0; i<n; i++)
for (int j=w; j>=size[i]; j++)
f[j] = max(f[j], f[j-size[i]]+value[i]);
如果物品不计件数,就是每个物品不只一件的话,稍微改下即可
for (int i=0; i<n; i++)
for (int j=size[i]; j<=w; j++)
f[j] = max(f[j], f[j-size[i]]+value[i]);
f[w] 即为所求
初始化分两种情况
1、如果背包要求正好装满则初始化 f[0] = 0, f[1~w] = -INF;
2、如果不需要正好装满 f[0~v] = 0;
多重背包问题要求很简单,就是每件物品给出确定的件数,求
可得到的最大价值
多重背包转换成 01 背包问题就是多了个初始化,把它的件数C 用
分解成若干个件数的集合,这里面数字可以组合成任意小于等于C
的件数,而且不会重复,之所以叫二进制分解,是因为这样分解可
以用数字的二进制形式来解释
比如:7的二进制 7 = 111 它可以分解成 001 010 100 这三个数可以
组合成任意小于等于7 的数,而且每种组合都会得到不同的数
15 = 1111 可分解成 0001 0010 0100 1000 四个数字
如果13 = 1101 则分解为 0001 0010 0100 0110 前三个数字可以组合成
7以内任意一个数,加上 0110 = 6 可以组合成任意一个大于6 小于13
的数,虽然有重复但总是能把 13 以内所有的数都考虑到了,基于这种
思想去把多件物品转换为,多种一件物品,就可用01 背包求解了。
看代码:
int n; //输入有多少种物品
int c; //每种物品有多少件
int v; //每种物品的价值
int s; //每种物品的尺寸
int count = 0; //分解后可得到多少种物品
int value[MAX]; //用来保存分解后的物品价值
int size[MAX]; //用来保存分解后物品体积
scanf("%d", &n); //先输入有多少种物品,接下来对每种物品进行分解
while (n--) { //接下来输入n中这个物品
scanf("%d%d%d", &c, &s, &v); //输入每种物品的数目和价值
for (int k=1; k<=c; k<<=1) { //<<右移 相当于乘二
value[count] = k*v;
size[count++] = k*s;
c -= k;
}
if (c > 0) {
value[count] = c*v;
size[count++] = c*s;
}
}
现在用count 代替 n 就和01 背包问题完全一样了
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
using namespace std;
int main()
{
int C;
int n,m;
int i,j,k;
int p[600],h[600],c[600];//价格,重量,袋数
int w[600],v[600];//重新分配
int dp[10005];
int index;
scanf("%d",&C);
while(C--)
{
memset(dp,0,sizeof(dp));
scanf("%d%d",&n,&m);
index = 1;
for(i = 1; i <= m; i++)
{
scanf("%d%d%d",&p[i],&h[i],&c[i]);
//利用二进制分解法,拆解物品,转化成01背包
for(j = 1; j <= c[i]; j <<= 1)
{
v[index] = j*p[i];
w[index++] = j*h[i];
c[i] -= j;
}
//不能正好分解的有剩余的部分单独作为一个物品。
if(c[i]>0)
{
v[index] = c[i]*p[i];
w[index++] = c[i]*h[i];
}
}
//01背包
for(i = 1; i < index; i++)
{
for(j = n; j >=v[i]; j--)
{
dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
}
}
printf("%d\n",dp[n]);
}
return 0;
}