自己的背包模板

19 篇文章 2 订阅


hdu2546 普通01背包,只是重量跟价值相同罢了,完全背包就只是把里面那个逆循环正过来就行

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn = 1e3 + 5;
int dp[maxn],a[maxn];
int main()
{
    int n, m, sum, max1;
    while(~scanf("%d",&n) && n)
    {
        memset(dp,0,sizeof(dp));
        for(int i = 1; i <= n; i++)
            scanf("%d",&a[i]);
        scanf("%d",&m);
        if(m < 5) {printf("%d\n",m); continue;}
        sort(a+1,a+1+n);
        m -= 5;
        for(int i = 1; i < n; i++)
            for(int j = m; j >= a[i]; j--)
            {
                dp[j] = max(dp[j],dp[j-a[i]]+a[i]);
            }
        printf("%d\n",m-dp[m]+5-a[n]);
    }
    return 0;
}

hdu 2191 多重背包模板(普通的)

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
const int maxn = 105;
int dp[maxn], v[maxn], w[maxn], c[maxn];
int main()
{
    int C, n, m;
    scanf("%d",&C);
    while(C--)
    {
        scanf("%d%d",&n,&m);
        for(int i = 1; i <= m; i++)
            scanf("%d%d%d",&v[i],&w[i],&c[i]);
        memset(dp,0,sizeof(dp));
        for(int i = 1; i <= n; i++)
        {
            for(int k = 1; k <= c[i]; k++)    //有c[i]个就循环c[i]次呗
            {
                for(int j = n; j >= v[i]; j--)
                {
                    dp[j] = max(dp[j],dp[j-v[i]] + w[i]);
                }
            }
        }
        printf("%d\n",dp[n]);
    }
    return 0;
}



    先说下 01 背包,有n 种不同的物品,每个物品有两个属性
    size 体积,value 价值,现在给一个容量为 w 的背包,问
    最多可带走多少价值的物品。


    int f[w+1];   //f[x] 表示背包容量为x 时的最大价值
    for (int i=0; i<n; i++)
        for (int j=w; j>=size[i]; j++)
            f[j] = max(f[j], f[j-size[i]]+value[i]);


    如果物品不计件数,就是每个物品不只一件的话,稍微改下即可
    for (int i=0; i<n; i++)
        for (int j=size[i]; j<=w; j++)
            f[j] = max(f[j], f[j-size[i]]+value[i]);


    f[w] 即为所求


    初始化分两种情况
    1、如果背包要求正好装满则初始化 f[0] = 0, f[1~w] = -INF;
    2、如果不需要正好装满 f[0~v] = 0;


    多重背包问题要求很简单,就是每件物品给出确定的件数,求
    可得到的最大价值


    多重背包转换成 01 背包问题就是多了个初始化,把它的件数C 用
    分解成若干个件数的集合,这里面数字可以组合成任意小于等于C
    的件数,而且不会重复,之所以叫二进制分解,是因为这样分解可
    以用数字的二进制形式来解释
    比如:7的二进制 7 = 111 它可以分解成 001 010 100 这三个数可以
    组合成任意小于等于7 的数,而且每种组合都会得到不同的数
    15 = 1111 可分解成 0001  0010  0100  1000 四个数字
    如果13 = 1101 则分解为 0001 0010 0100 0110 前三个数字可以组合成
    7以内任意一个数,加上 0110 = 6 可以组合成任意一个大于6 小于13
    的数,虽然有重复但总是能把 13 以内所有的数都考虑到了,基于这种
    思想去把多件物品转换为,多种一件物品,就可用01 背包求解了。

看代码:
    int n;  //输入有多少种物品
    int c;  //每种物品有多少件
    int v;  //每种物品的价值
    int s;  //每种物品的尺寸
    int count = 0; //分解后可得到多少种物品
    int value[MAX]; //用来保存分解后的物品价值
    int size[MAX];  //用来保存分解后物品体积

    scanf("%d", &n);    //先输入有多少种物品,接下来对每种物品进行分解

    while (n--) {   //接下来输入n中这个物品
        scanf("%d%d%d", &c, &s, &v);  //输入每种物品的数目和价值
        for (int k=1; k<=c; k<<=1) { //<<右移 相当于乘二
            value[count] = k*v;
            size[count++] = k*s;
            c -= k;
        }
        if (c > 0) {
            value[count] = c*v;
            size[count++] = c*s;
        }
    }

    现在用count 代替 n 就和01 背包问题完全一样了

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
using namespace std;
int main()
{
    int C;
    int n,m;
    int i,j,k;
    int p[600],h[600],c[600];//价格,重量,袋数
    int w[600],v[600];//重新分配
    int dp[10005];
    int index;
    scanf("%d",&C);
    while(C--)
    {
        memset(dp,0,sizeof(dp));
        scanf("%d%d",&n,&m);
        index = 1;
        for(i = 1; i <= m; i++)
        {
            scanf("%d%d%d",&p[i],&h[i],&c[i]);
            //利用二进制分解法,拆解物品,转化成01背包
            for(j = 1; j <= c[i]; j <<= 1)
            {
                v[index] = j*p[i];
                w[index++] = j*h[i];
                c[i] -= j;
            }
            //不能正好分解的有剩余的部分单独作为一个物品。
            if(c[i]>0)
            {
                v[index] = c[i]*p[i];
                w[index++] = c[i]*h[i];
            }
        }
        //01背包
        for(i = 1; i < index; i++)
        {
            for(j = n; j >=v[i]; j--)
            {
                dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
            }
        }
        printf("%d\n",dp[n]);
    }
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值