CodeForces - 996D Suit and Tie (贪心)

D. Suit and Tie
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Allen is hosting a formal dinner party. 2n2n people come to the event in nn pairs (couples). After a night of fun, Allen wants to line everyone up for a final picture. The 2n2n people line up, but Allen doesn't like the ordering. Allen prefers if each pair occupies adjacent positions in the line, as this makes the picture more aesthetic.

Help Allen find the minimum number of swaps of adjacent positions he must perform to make it so that each couple occupies adjacent positions in the line.

Input

The first line contains a single integer nn (1n1001≤n≤100), the number of pairs of people.

The second line contains 2n2n integers a1,a2,,a2na1,a2,…,a2n. For each ii with 1in1≤i≤nii appears exactly twice. If aj=ak=iaj=ak=i, that means that the jj-th and kk-th people in the line form a couple.

Output

Output a single integer, representing the minimum number of adjacent swaps needed to line the people up so that each pair occupies adjacent positions.

Examples
input
Copy
4
1 1 2 3 3 2 4 4
output
Copy
2
input
Copy
3
1 1 2 2 3 3
output
Copy
0
input
Copy
3
3 1 2 3 1 2
output
Copy
3
Note

In the first sample case, we can transform 11233244112323441122334411233244→11232344→11223344 in two steps. Note that the sequence 11233244113232441133224411233244→11323244→11332244 also works in the same number of steps.

The second sample case already satisfies the constraints; therefore we need 00 swaps.


题意:n个互不相同的数字,每个数字有两个,共2*n个数字,使得任意相等的数字都相邻,最少的操作次数,操作为:交换相邻两个数字的位置。

思路:从后往前对每一个数,把他后面对应的数字交换到他的旁边,这样下去就是最优解。这样每一个数前面都是已经匹配好的,而且把后面的数字往前走总是在减少他们的距离,而其他的数字之间的距离不可能增大,有些甚至会减少。

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
typedef long long ll;
const int maxn = 4e5 + 5;
ll a[maxn];
int main()
{
    int n;
    while(~scanf("%d", &n))
    {
        for(int i = 1; i <= 2*n; i++)
            scanf("%lld", &a[i]);
        ll ans = 0;
        for(int i = 1; i <= 2*n; i+=2)
        {
            if(a[i] == a[i+1]) continue;
            else
            {
                for(int j = i + 1; j <= 2*n; j++)
                {
                    if(a[j] == a[i])
                    {
                        ans += j-i-1;
                        for(int k = j; k > i+1; k--)
                            swap(a[k], a[k-1]);
                        break;
                    }

                }
            }
        }
        printf("%lld\n", ans);
    }
    return 0;
}




CodeForces - 616D是一个关于找到一个序列中最长的第k好子段的起始位置和结束位置的问题。给定一个长度为n的序列和一个整数k,需要找到一个子段,该子段中不超过k个不同的数字。题目要求输出这个序列最长的第k好子段的起始位置和终止位置。 解决这个问题的方法有两种。第一种方法是使用尺取算法,通过维护一个滑动窗口来记录\[l,r\]中不同数的个数。每次如果这个数小于k,就将r向右移动一位;如果已经大于k,则将l向右移动一位,直到个数不大于k。每次更新完r之后,判断r-l+1是否比已有答案更优来更新答案。这种方法的时间复杂度为O(n)。 第二种方法是使用枚举r和双指针的方法。通过维护一个最小的l,满足\[l,r\]最多只有k种数。使用一个map来判断数的种类。遍历序列,如果当前数字在map中不存在,则将种类数sum加一;如果sum大于k,则将l向右移动一位,直到sum不大于k。每次更新完r之后,判断i-l+1是否大于等于y-x+1来更新答案。这种方法的时间复杂度为O(n)。 以上是两种解决CodeForces - 616D问题的方法。具体的代码实现可以参考引用\[1\]和引用\[2\]中的代码。 #### 引用[.reference_title] - *1* [CodeForces 616 D. Longest k-Good Segment(尺取)](https://blog.csdn.net/V5ZSQ/article/details/50750827)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Codeforces616 D. Longest k-Good Segment(双指针+map)](https://blog.csdn.net/weixin_44178736/article/details/114328999)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值