机器学习实战
小白终究会黑化
好好学习,好好敲代码,挣大钱
展开
-
《计算机视觉黑魔法16个实战项目》之扫描全能王
imutils:A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, displaying Matplotlib images, sorting contours, detecting edges, and much more easier with OpenCV and both Python原创 2020-10-18 16:53:03 · 1088 阅读 · 0 评论 -
《机器学习实战》之决策树
决策树决策树的构造信息增益划分数据集递归构建决策树三级目录本章内容决策树的简介在数据集中度量一致性使用递归函数构造决策树使用Matplotlib绘制图形树决策树一个最重要的任务是为了理解数据中所蕴含的知识信息,因此决策树可以使用不熟悉的数据集集合,并从中提取出一些系列规则,这些机器根据数据集创建规则的过程,就是机器学习的过程。决策树的优缺点:优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。缺点:可能产生过度匹配问题适用数据类型:数值型和标称型原创 2020-10-16 16:49:40 · 694 阅读 · 0 评论 -
《机器学习实战》之 k-近邻算法
本章内容k-近邻算法概述实施kNN分类算法伪代码python代码实例一:改进约会网站的配对效果准备数据:从文本文件中解析数据分析数据:使用Matplotlib创建散点图准备数据:归一化数值测试 算法:作为完整程序验证分类器使用算法:构建完整可用程序实例二:手写识别系统准备数据:将图像转换为测试向量测试算法:使用kNN算法识别手写数字本章小结k-近邻分类算法从文本文件中解析和导入数据使用Matplotlib创建扩散图-归一化数值k-近邻算法概述简言之,k-近邻算法采用测量不同特征值之间的距离方原创 2020-10-08 14:14:07 · 266 阅读 · 0 评论