USCAO-Section 1.3 Prime Cryptarithm

原题:
The following cryptarithm is a multiplication problem that can be solved by substituting digits from a specified set of N digits into the positions marked with *. If the set of prime digits {2,3,5,7} is selected, the cryptarithm is called a PRIME CRYPTARITHM.

  * * *

x * *
——-
* * * <– partial product 1
* * * <– partial product 2
——-
* * * *

Digits can appear only in places marked by `*’. Of course, leading zeroes are not allowed.

The partial products must be three digits long, even though the general case (see below) might have four digit partial products.

** Note About Cryptarithm’s Multiplication ****
In USA, children are taught to perform multidigit multiplication as described here. Consider multiplying a three digit number whose digits are ‘a’, ‘b’, and ‘c’ by a two digit number whose digits are ‘d’ and ‘e’:

[Note that this diagram shows far more digits in its results than
the required diagram above which has three digit partial products!]

      a b c     <-- number 'abc'
    x   d e     <-- number 'de'; the 'x' means 'multiply'
 -----------

p1 * * * * <– product of e * abc; first star might be 0 (absent)
p2 * * * * <– product of d * abc; first star might be 0 (absent)
———–
* * * * * <– sum of p1 and p2 (e*abc + 10*d*abc) == de*abc

Note that the ‘partial products’ are as taught in USA schools. The first partial product is the product of the final digit of the second number and the top number. The second partial product is the product of the first digit of the second number and the top number.

Write a program that will find all solutions to the cryptarithm above for any subset of supplied non-zero single-digits.

题意:
用给定的n个数字(每个可以重复使用)往算式里面填,看有多少满足的方案。

题解:
暴力枚举所有三位数*两位数,然后在枚举中加判断和剪枝。
直接上代码:

/*
ID:newyear111
PROG: crypt1
LANG: C++
*/

#include <iostream>
#include <fstream>
#include <string>
#include<algorithm>
using namespace std;
const int N=15;

int hash[N];
int n;
bool isOK(int x){
    while(x){
        if(!hash[x%10]){
            return 0;
        }
        x/=10;
    }
    return 1;
}
int main()
{
    ifstream fin("crypt1.in");
    ofstream fout("crypt1.out");
    fin>>n; 
    for(int i=0;i<n;i++){
        int t;
        fin>>t;
        hash[t]=1;
    }

    int ans=0;
    for(int i=100;i<=999;i++){
        if(isOK(i)){
            for(int j=10;j<=99;j++){
                if(isOK(j)){
                    int t=i*j;
                    int t1=i*(j%10);
                    int t2=i*(j/10);
                    //剪枝 
                    if(t>9999)
                        break;
                    if(t1>999||t1<100||t2>999||t2<100||t<1000)
                        continue;
                    if(isOK(t)&&isOK(t1)&&isOK(t2))
                        ans++;
                }
            }
        }
    }
    fout<<ans<<endl;
    fin.close();
    fout.close();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值