Mongodb的性能监测工具
Mongotop 观察N秒内,每个库上读写花费的时间
Mongostat
inserts 每秒插入
query 每秒查询
update 每秒更新
delete 每秒删除
getmore 每秒查询游标
command 每秒总命令
flushes 每秒同步次数
mapped mmap内存大小(M)
size 虚拟内存(M)
res 物理内存(M)
faults 取内存页面失败次数(要去swap调)
locked db 锁住某库的时间
idx miss 索引未命中率
qr 队列里读取命令
qw 队列里写入命令
ar 活动的读取命令
aw 活动的读取命令
netIn 接收的流量
netOut 发出的流量
conn 当前打开连接数
set 复制集名称
repl 在复制集中的名称
db.serverStatus();
例: http://127.0.0.1:28017
#查询每个栏目下的商品数量
{
key:{cat_id:1},
cond:{},
reduce:function(curr,result) {
result.cnt += 1;
},
initial:{cnt:0}
}
#查询每个栏目下价格高于50元的商品数量
{
key:{cat_id:1},
cond:{shop_price:{$gt:50}},
reduce:function(curr,result) {
result.cnt += 1;
},
initial:{cnt:0}
}
#每个栏目下的商品库存量 sum()操作
{
key:{cat_id:1},
cond:{},
reduce:function(curr,result) {
result.num += curr.goods_number;
},
initial:{num:0}
}
#查询每个栏目最贵的商品价格, max()操作
{
key:{cat_id:1},
cond:{},
reduce:function(curr , result) {
if(curr.shop_price > result.max) {
result.max = curr.shop_price;
}
},
initial:{max:0}
}
#同上,查询每个栏目下最便宜的商品价格,同学们自行完成
#查询每个栏目下商品的平均价格
{
key:{cat_id:1},
cond:{},
reduce:function(curr , result) {
result.cnt += 1;
result.sum += curr.shop_price;
},
initial:{sum:0,cnt:0},
finalize:function(result) {
result.avg = result.sum/result.cnt;
}
}
#查询每个栏目下的商品数量
db.collection.aggregate();
[
{$group:{_id:"$cat_id",total:{$sum:1}}}
]
#查询goods下有多少条商品,select count(*) from goods
[
{$group:{_id:null,total:{$sum:1}}}
]
#查询每个栏目下 价格大于50元的商品个数
[
{$match:{shop_price:{$gt:50}}},
{$group:{_id:"$cat_id",total:{$sum:1}}}
]
#查询每个栏目下 价格大于50元的商品个数
#并筛选出"满足条件的商品个数" 大于等于3的栏目
[
{$match:{shop_price:{$gt:50}}},
{$group:{_id:"$cat_id",total:{$sum:1}}},
{$match:{total:{$gte:3}}}
]
#查询每个栏目下的库存量
[
{$group:{_id:"$cat_id" , total:{$sum:"$goods_number"}}},
]
#查询每个栏目下的库存量,并按库存量排序
[
{$group:{_id:"$cat_id" , total:{$sum:"$goods_number"}}},
{$sort:{total:1}}
]
#查询每个栏目下的库存量,并按库存量排序
[
{$group:{_id:"$cat_id" , total:{$sum:"$goods_number"}}},
{$sort:{total:1}},
{$limit:3}
]
#查询每个栏目的商品平均价格,并按平均价格由高到低排序
[
{$group:{_id:"$cat_id" , avg:{$avg:"$shop_price"}}},
{$sort:{avg:-1}}
]
mapReduce 随着"大数据"概念而流行.
其实mapReduce的概念非常简单,
从功能上说,相当于RDBMS的 group 操作
mapReduce的真正强项在哪?
答:在于分布式,当数据非常大时,像google,有N多数据中心,
数据都不在地球的一端,用group力所不及.
group既然不支持分布式,单台服务器的运算能力必然是有限的.
而mapRecuce支持分布式,支持大量的服务器同时工作,
用蛮力来统计.
mapRecuce的工作过程:
map-->映射
reduce->归约
map: 先是把属于同一个组的数据,映射到一个数组上.cat_id-3 [23,2,6,7]
reduce: 把数组(同一组)的数据,进行运算.
用mapReduce计算每个栏目的库存总量
map函数
var map = function() {
emit(this.cat_id,this.goods_number);
}
var reduce = function(cat_id,numbers) {
return Array.sum(numbers);
}
db.goods.mapReduce(map,reduce,{out:'res'});
#用mapReduce计算每个栏目下商品的平均价格
var map = function() {
emit(this.cat_id,this.shop_price);
}
var reduce = function(cat_id,values) {
return Array.avg(values);
}
db.goods.mapReduce(map,reduce,{out:'res'});