1113: [视频]树形动态规划(TreeDP)8:树(tree)(树形dp状态设计总结)

根据最近做的几道树形dp题总结一下规律。(从这篇往前到洛谷 P1352 )
这几道题都是在一颗树上,然后要让整棵树的节点或边
满足一种状态。然后点可以影响到相邻点的这种状态
然后求最小次数

那么要从两个维度来设计状态
第一个维度
(1)以i为根的树的所有节点都满足这种状态
(2)以i为根的树的只有i不满足这种状态
第二个维度
(1)i这个点取
(2)i这个点不取

所以就会有四种状态,不过最近几道题都是直接pass掉了其中一种
只有三种状态。
状态设计好了就很好写转移方程了,记住转移的过程中孩子一定
要都满足状态,这样做下来才可以使得整棵树满足状态。


然后我们把这个模型套到这道题
第一个维度
亮表示以i为根的子树全部节点都亮
不亮表示以i为根的子树只有i不亮
第二个维度
i这个灯泡开或者不开
所以状态是

(1)f[i][0] 没开,亮
(2)f[i][1] 没开,没亮
(3)f[i][2] 开,亮
(4)f[i][3] 开,没亮

这里f[i][3]pass掉,因为你要把没亮变成亮需要根节点按按钮,
此时跟节点消耗一个操作,而孩子自己又消耗一个操作
如果是开,亮的话只用消耗孩子一个操作。

现在写状态转移方程
u表示根节点,v表示孩子
f[u][2] = sum(f[v][1])
这时跟节点一开就都亮了(f[u][2]一开始会初始化为1)

f[u][0] = sum(min(f[v][0], f[v][2]))

f[u][1] = sum(min(f[v][0], f[v][2]))

这里有个奇偶数的问题,令sum = sum(min(f[v][0], f[v][2]))

不仅要算出sum
然后还要算出以最小花费把其中一个min换成另外一个操作的值,即sum + mint
假设f[v][2]是奇数,意味着当前是亮的,所以f[u][1] = sum + mint,f[u][0] = sum   
如果是偶数,就反过来,f[u][1] = sum,f[u][0] = sum + mint 

这里有小细节,到叶子结点的时候,f[u][0]是不可能的(不考虑父亲)
那么这时按照程序f[u][0]会等于无穷大,所以相当于不可能
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值