树形DP

今天上课的内容就是树形DP,新来的ldw老师第一次给我们上课,激动~

 

【例题引入】

题目传送门二叉苹果树

题目大意:有一颗二叉树(以1为根节点),每条边上有一些苹果,其中有 N 个节点,(N - 1)条边,现要减去一些边,保留 M 条边,使得剩下的苹果个数最多,求出这个数(洛谷 P2015)

其实我看到题如果不会树形DP的话连暴力都不会打的

这道题很像一道DP题(最优解),但普通的DP肯定是不行的,我们要用树形DP来做

 

【基本思想】

所谓树形DP呢,就是在树上做DP

DP方向有两个:

  1. 根--->叶:即从根节点转移到叶节点,这种动态规划在实际的问题中运用的不多 
  2. 叶--->根:即根的子节点传递有用的信息给根,然后根得出最优解的过程,这类的题目比较多

树是一种特殊的图,可以描述比较复杂的关系,再加上树的递归定义,是一种非常合适动规的框架,树形动态规划就成为动规中很特殊的一种类型。

我们知道,动态规划类问题必须满足两个性质——最优子结构性质无后效性,现在将DP转移到树上,(以例题举例)该问题具有明显的最优子结构性质;每个问题都与左右儿子结点有关系,但不与孙子结点发生关系,具备无后效性;且计算方案时,搜索子结构时具备重叠性,可以用动态规划来解决。 

那么和其他的动态规划题目一样,树形DP的解决也要考虑3步:

  1. 确立状态:几乎所有的问题都要保存以某结点为根的子树的情况,再根据具体问题考虑加维。
  2. 状态转移:状态转移的变化比较多,要根据具体问题具体分析。 
  3. 实现方式:记忆化搜索和递推 。

其实只要把状态转移方程写出来一般就问题不大了

 

【例题分析】

本题的权值在边上,不太好用这个信息来解决问题,我们先把问题转换一下,选 M 条边转换成选(M + 1)个点,且必须选择根节点(不然整棵树就没了)

对于一个节点 x,它的左儿子为 lson [ x ]右儿子为 rson [ x ]

定义 f [ x ][ y ] 表示以 x 为根的子树上保留 y 个节点时的最大苹果数,那答案就是 f [ 1 ][ M + 1 ]

现在我们考虑如何转移

我们假设现在 dp 到以 x 为根节点的子树,它能保留 y 个点,若我们给左儿子 i 个点,那右儿子就只有(y - i - 1)个点(根节点必须要保留),我们只需要枚举 i 就可以了

状态转移方程:f [ x ][ y ] = max { f [ lson [ x ] ] [ i ] + f [ rson [ x ] ][ y - i - 1 ] + a [ i ] } ( 0 ≤ i ≤ y - 1 ) 

初始化:这个DP是从叶节点做到根节点的,因此叶节点初始化为它与它父亲连的边的苹果数,其他节点的初始化为0

这道题中是知道根节点为1,若不知道的话还要枚举根节点,再建树

 

【代码】

好的,上代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=105,M=205;
int n,m,t;
int first[N],v[M],w[M],next[M];
int a[N],lson[N],rson[N],father[N],f[N][N];
bool used[N];
void add(int x,int y,int z)
{
    t++;
    next[t]=first[x];
    first[x]=t;
    v[t]=y;
    w[t]=z;
}
int dp(int x,int y)
{
    if(x==0||y==0)  return 0;
    if(!lson[x]&&!rson[x])  return a[x];
    if(f[x][y]>0)  return f[x][y];
    int i,j;
    for(i=0;i<=y-1;++i)
      f[x][y]=max(f[x][y],dp(lson[x],i)+dp(rson[x],y-i-1)+a[x]);
    return f[x][y];
}
void pre(int root)
{
    int x,i;
    for(i=first[root];i;i=next[i])
    {
        x=v[i];
        if(x==father[root])
          continue;
        father[x]=root;
        if(!lson[root])  lson[root]=x;
        else  rson[root]=x;
        a[x]=w[i];
        if(!used[x])
        {
            used[x]=true;
            pre(x);
        }
    }
}
int main()
{
    int x,y,z,i;
    scanf("%d%d",&n,&m);
    for(i=1;i<n;++i)
    {
        scanf("%d%d%d",&x,&y,&z);
        add(x,y,z);
        add(y,x,z);
    }
    pre(1);
    dp(1,m+1);
    printf("%d",f[1][m+1]);
    return 0;
}

 

【一些小知识】

如果题目中要给出一棵树,除了直接说给出一棵树之外,还有以下几种常见说法:

1、有N个点,N-1条边的无向图,任意两顶点间可以相互到达
2、无向图中任意两个点间有且仅有一条路
3、一个点至多有一个前趋,但可以有多个后继
4、无向图中没有环

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
树形动态规划(Tree DP)是一种常用的动态规划算法,用于解决树结构相关的问题。在Python中,可以使用递归或者迭代的方式实现树形DP树形DP的基本思想是,从树的叶子节点开始,逐层向上计算每个节点的状态,并利用已经计算过的节点状态来更新当前节点的状态。这样可以通过自底向上的方式,逐步计算出整个树的最优解。 下面是一个简单的示例,演示如何使用树形DP解决一个二叉树中节点权值之和的最大值问题: ```python class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right def max_sum(root): if root is None: return 0 # 递归计算左右子树的最大权值和 left_sum = max_sum(root.left) right_sum = max_sum(root.right) # 当前节点的最大权值和为当前节点值加上左右子树中较大的权值和 return root.val + max(left_sum, right_sum) # 构建一个二叉树 root = TreeNode(1) root.left = TreeNode(2) root.right = TreeNode(3) root.left.left = TreeNode(4) root.left.right = TreeNode(5) # 计算二叉树中节点权值之和的最大值 result = max_sum(root) print(result) ``` 这段代码中,我们定义了一个`TreeNode`类来表示二叉树的节点,其中`val`表示节点的权值,`left`和`right`分别表示左子节点和右子节点。`max_sum`函数使用递归的方式计算二叉树中节点权值之和的最大值,通过比较左右子树的最大权值和来确定当前节点的最大权值和。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值