神经网络中引入非线性变换的主要目的是什么

 

上面的是输入图像,下面的是输入图像经过的非线性变换之后长的样子

非线性变换的主要目的就是给我们的网络当中引入一些非线性的特征,因为非线性越多的话,才能训练出符合各种曲线或符合各种特征的一个模型,如果大家都是直愣愣的话,那模型泛化能力就不够好。

这个非线性的话其实不是很难,大家只要掌握了其中一个,另外一个无非是非线性的处理公式不一样。

其实简单来说就是增加神经网络的表达能力,使得神经网络可以任意逼近任何非线性函数,这样神经网络就可以应用到众多的非线性模型中。

当然也可以从线性代数的角度线性组合来分析

非线性的原因:

机器学习-神经网络为什么需要非线性(激活函数)_为什么神经网络需要非线性激活函数-CSDN博客

神经网络的激活函数为什么要使用非线性函数? - 知乎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值