上面的是输入图像,下面的是输入图像经过的非线性变换之后长的样子
非线性变换的主要目的就是给我们的网络当中引入一些非线性的特征,因为非线性越多的话,才能训练出符合各种曲线或符合各种特征的一个模型,如果大家都是直愣愣的话,那模型泛化能力就不够好。
这个非线性的话其实不是很难,大家只要掌握了其中一个,另外一个无非是非线性的处理公式不一样。
其实简单来说就是增加神经网络的表达能力,使得神经网络可以任意逼近任何非线性函数,这样神经网络就可以应用到众多的非线性模型中。
当然也可以从线性代数的角度线性组合来分析
非线性的原因: