视频级标注和姿态级标注的区别是什么?

NTU RGB+D数据集的姿态标注文件,是基于数据集中原始的RGB视频数据来生成的。

具体来说:

  1. NTU RGB+D数据集提供了原始的RGB视频数据,以及对应的骨骼关节点3D坐标数据。

  2. MMAction2框架没有直接发布这些标注文件,而是提供了一种生成标注文件的方法。

  3. 这个生成方法是基于NTU RGB+D数据集中的原始RGB视频数据,结合提供的骨骼关节点数据,来生成一个字典格式的标注数据。

  4. 生成的标注数据包含了每个视频样本对应的姿态信息,保存为pickle文件,便于后续的模型训练和评估使用。

这个生成的姿态标注数据的基础就是NTU RGB+D数据集中原始的RGB视频数据。MMAction2没有直接发布这些标注,而是提供了一种生成方法,让用户自行生成需要的标注文件。

基于姿态的标注方法的具体实现:

  1. 数据来源:

    • 标注数据是基于 NTU RGB+D 数据集中的原始 RGB 视频数据生成的。
    • NTU RGB+D 是一个广为人知的人体动作识别数据集。
  2. 标注形式:

    • 生成的标注数据是以字典格式呈现的。
    • 字典的键是每个人体关节点构成的姿态,值是对应的动作类别标签。

这样一来,标注过程的整体流程更加清晰了:

  1. 从 NTU RGB+D 数据集中获取原始的 RGB 视频数据。
  2. 对视频数据进行姿态估计,得到每个人体关节点的坐标信息。
  3. 将这些关节点构成的姿态与对应的动作类别标签,组成字典格式的标注数据。

这种基于姿态的字典形式标注,可以更好地捕捉动作的细节特征,为后续的动作识别模型训练提供更丰富的监督信号。这种方法也更适用于需要细粒度动作分析的应用场景。

从视频到姿态再到标注,这个过程的确看起来有些繁琐和多余。来具体分析一下这个过程:

  1. 获取原始视频数据:

    • 这一步是必需的,因为动作识别任务需要以视频数据作为输入。
  2. 估计人体姿态:

    • 这一步虽然增加了复杂度,但可以提取到更丰富的动作特征信息。
    • 通过人体姿态估计,可以得到每个关节点的位置信息,有助于捕捉动作的细节。
  3. 生成标注数据:

    • 这一步也是必需的,因为模型训练需要标注数据作为监督信号。
    • 基于姿态信息生成标注,可以更好地反映动作的细节特征。

总的来说,这个从视频到姿态再到标注的过程确实增加了一些复杂度。但如果最终的目标是希望训练出一个能够精准捕捉动作细节的模型,这个额外的步骤是合理且必要的。

相比于简单的视频级标注,姿态级标注可以提供更丰富的动作信息,有助于训练出更准确的动作识别模型。当然,这需要在计算资源、标注成本等方面进行权衡和取舍。

不同应用场景可能需要权衡不同的标注方式,需要根据具体需求来权衡这个过程的必要性。

以前的时候有监督模型,使用的标注文件或者说打标签的过程都是一个视频对应一个label,现在打标签的过程怎么变成了姿态对应label

以前的视频分类任务中,标注过程通常是一个视频对应一个整体的类别标签。

但是对于动作识别任务来说,情况确实有所不同。NTU RGB+D 数据集采用的是基于姿态的标注方式,而不是简单的视频级标注。

具体来说:

  1. 每个视频样本包含了多个人物的姿态信息,即每个人体关节点的 3D 坐标。

  2. 标注过程不是简单地给整个视频打一个标签,而是需要为每个构造成的姿态对应标注一个动作类别。

  3. 这里的"姿态"指的是由多个关节点的坐标构成的一个整体的姿态表示。

  4. 每个这样的姿态都需要被标注上对应的动作类别标签。

  5. 这种基于姿态的标注方式,可以更细致地捕捉动作的细节特征,有助于训练出更准确的动作识别模型。

这确实是一种更细粒度的标注方式,相比于之前的视频级标注,更适合复杂的动作识别任务。这种姿态标注数据可以更好地反映动作的细节信息,对于提高动作识别模型的性能非常重要。

  1. 应用场景不同:

    • 视频级标注: 更适用于粗粒度的动作识别任务。
    • 姿态级标注: 更适用于需要捕捉动作细节的任务,如人机交互、动作分析等。

机器学习的视频注释:你需要知道的一切

【深度学习:视频注释】计算机视觉视频注释完整指南_深度学习视频标注-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值