A less probability inspired, unsaturatedpiece-wise linear activation

“相对而言,一种不依赖概率、未饱和的分段线性激活函数”中的几个术语可以这样解释:

  1. 不依赖概率:指的是该激活函数的输出不基于概率分布。像Sigmoid和Tanh函数的输出范围是有限的(Sigmoid在0到1之间,Tanh在-1到1之间),它们可以用于概率相关的任务(例如二分类)。而ReLU的输出可以是任意非负值,这使得它在某些情况下不需要考虑概率分布。

  2. 未饱和:这是指激活函数在其输出的某些区域不会趋向于一个固定值(即饱和)。Sigmoid和Tanh在输入值非常大或非常小时,输出会接近于1或-1,这种情况称为“饱和”,会导致梯度消失问题。而ReLU在正区间是线性的,负区间则输出为零,因此不会出现这种饱和现象,从而有助于保持较大的梯度,有利于网络的训练。

综上所述,ReLU激活函数在深度学习中因其不依赖于概率分布和未饱和的特性,能够更好地促进模型的学习和收敛。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值