1. 引入
2. 强调
书上写的a表示测量结果与距离当前时刻的时间间隔,和公式9.1里面的a不是一回事
书上定义里说的是w(a),这个a指的是时间间隔,而公式9.1里w(t-a)这里面表示t-a是时间间隔,a和t都是时刻
3. 举例子
假设整个宇宙空间中只有地球和两个恒星,它们从无穷远的过去开始存在,并且还会存在无穷远的时间。两个恒星时时刻刻在发光,发光强度是随时间变化的,地球不发光。那么地球接收的总光强度就是两个恒星的总光强。
为了研究方便,选取某个时刻作为时间原点t=0(这个案例是绝对时空观,不考虑相对论效应)。
某个恒星在它表面的光强随时间变化的函数是q(t),例如t=0时,恒星表面的光强是q(0),t=-1时(时间原点前1秒),表面光强是q(-1),t=1时,表面光强是q(1)。这里有两个恒星,它们各自的光强函数分别设为q1(t)和q2(t)。
然后研究某个时刻,地球上接收到的来自某个恒星(不妨假设是第一个恒星:恒星1)的光强。
首先,在三维空间中,光速是c,光强随着离开光源的距离增加以二次反比下降。例如:t=to时刻从恒星1发出的强度为q1(to)的光,经过时间△t后,已经距离光源(恒星1)△r=c△t,那么这束光此时的强度就变成了q1(to)×(1/c△t)²。对于恒星2,也是同理。
现在把视角切换成地球。已知地球和恒星1的距离是r1,和恒星2的距离是r2,那么光从恒星1传播到地球的用时△t1是r1/c,从恒星2传播到地球的时间△t2是r2/c。
在某个时刻t=T,地球接收到了来自恒星1在r1/c之前发出的光q1(T-△t1),这个光到达地球时已经衰减到原来的(1/r1)²
所以在T时刻,地球接收到的来自恒星1的光强是q1(T-△t1)×(1/r1)²。
同理,T时刻,地球接收到的来自恒星2的光强是q2(T-△t2)×(1/r2)²。此时地球上的总光强就是q1(T-△t1)×(1/r1)²+q2(T-△t2)×(1/r2)²
现在把情况拓展
有n个恒星,那么在T时刻,地球接收的总光强就是∑(1,n)qn(T-△tn)×(1/rn)²
看出来T-△tn是怎么来的了吗?
简单来说,你晚上看星星,眼睛接收的星光是天空中所有的星光的总和。其中,有的星星离地球近,月光只要1秒就到地球,所以你看到的是1秒之前的月光。人马座距离地球4光年,你看到的是它4年前的光。天狼星距离地球8.6光年,看到的是8.6年前的光。织女星25光年,看到的是25年前的光。……不仅是发出光的时间不同,强度也不同。月光的衰减最小,人马座的光衰减的较大,天狼星,织女星的光衰减的更大……
正是这些从过去不同时间发出的,经过不同程度衰减的光,最终汇聚到你眼睛里,构成了你看到的夜空。换句话说,你其实是在对这些星星做卷积,把它们在不同时间,经过了不同程度衰减的光,累加到了此时此刻你的眼睛里。
先把脑子里之前学到的卷积的理解先忘掉,然后先研究这样一个问题:某个时刻,看到的星空是由哪些光形成的,然后自然就会沿着刚才的思路分析,自然就会得到“卷积”。
一个系统输入不稳定,输出稳定,使用卷积求系统存量。