标签:贪心算法;难度:简单
思路:考虑是否能取到两者最合适的第一个,主要考虑是差值最大的肯定要优先取最小的。因此将按照差值排序,前N个最小的去A,后N个去B
题目:
- 两地调度
公司计划面试 2N 人。第 i 人飞往 A 市的费用为 costs[i][0],飞往 B 市的费用为 costs[i][1]。
返回将每个人都飞到某座城市的最低费用,要求每个城市都有 N 人抵达。
示例:
输入:[[10,20],[30,200],[400,50],[30,20]]
输出:110
解释:
第一个人去 A 市,费用为 10。
第二个人去 A 市,费用为 30。
第三个人去 B 市,费用为 50。
第四个人去 B 市,费用为 20。
最低总费用为 10 + 30 + 50 + 20 = 110,每个城市都有一半的人在面试。
提示:
1 <= costs.length <= 100
costs.length 为偶数
1 <= costs[i][0], costs[i][1] <= 1000
解法:
// 时间O(n) 空间O(1)
/**
* @param {number[][]} costs
* @return {number}
*/
var twoCitySchedCost = function(costs) {
// A-B 差值最小的N个,去A
costs.sort((a,b) => {return (a[0]-a[1]) - (b[0]-b[1])})
// console.log(costs)
let sum = 0
for(let i = 0, len = costs.length/2; i < len; i++){
sum += costs[i][0] + costs[i+len][1]
}
return sum
};