标签:动态规划、回溯算法、贪心算法;难度:困难;
回溯算法暂未了解,目前先不做说明;改题解法采用动态规划。
思路:
p[i] 为‘?’,或与当前对比s字母相等,dp[i][j] = dp[i-1][j-1]
为‘*’,时,dp[i][j] = dp[i][j-1] || dp[i-1][j];
另外,dp[0][0] = true,剩下的默认为false;且p[i-1]为‘*’,则之后的均可保持匹配的样子,可得dp[i][0] = dp[i-1][0];
题目:
-
通配符匹配
给定一个字符串 (s) 和一个字符模式 § ,实现一个支持 ‘?’ 和 ‘*’ 的通配符匹配。‘?’ 可以匹配任何单个字符。
‘*’ 可以匹配任意字符串(包括空字符串)。
两个字符串完全匹配才算匹配成功。
说明:
s 可能为空,且只包含从 a-z 的小写字母。
p 可能为空,且只包含从 a-z 的小写字母,以及字符 ? 和 。
示例 1:
输入:
s = “aa”
p = “a”
输出: false
解释: “a” 无法匹配 “aa” 整个字符串。
示例 2:
输入:
s = “aa”
p = ""
输出: true
解释: ‘’ 可以匹配任意字符串。
示例 3:
输入:
s = “cb”
p = “?a”
输出: false
解释: ‘?’ 可以匹配 ‘c’, 但第二个 ‘a’ 无法匹配 ‘b’。
示例 4:
输入:
s = “adceb”
p = “ab”
输出: true
解释: 第一个 '’ 可以匹配空字符串, 第二个 '’ 可以匹配字符串 “dce”.
示例 5:
输入:
s = “acdcb”
p = "ac?b"
输出: false
解法:
/**
* @param {string} s
* @param {string} p
* @return {boolean}
*/
/* 动态规划
? 字母相等 dp[i][j] = dp[i-1][j-1]
* dp[i][j] = dp[i][j-1] || dp[i-1][j]
dp[0][0] = true,剩下的默认为false
*/
// 时间O(mn) 空间O(mn)
var isMatch = function(s, p) {
let m = p.length, n = s.length;
let dp = Array.from(new Array(m+1),() => new Array(n+1).fill(false));
dp[0][0] = true;
for(let i = 1;i <= m;i++){
if(p[i-1] == '*'){
dp[i][0] = dp[i-1][0];
}
for(let j = 1;j <= n;j++){
if(s[j-1] == p[i-1] || p[i-1] == '?'){
dp[i][j] = dp[i-1][j-1];
}else if(p[i-1] == '*'){
dp[i][j] = dp[i][j - 1] || dp[i - 1][j];
}
}
}
return dp[m][n];
};