今天做了一道有关数组的题,第一眼看到它,啥玩意,那么长的题干,怪吓人的,仔细一看,就那样了,上菜:
题目描述:
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)
分析:题干是不是很长,吓人吧,那我们抽取一下有用的信息:
计算连续子向量的最大和
例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和。(子向量的长度至少是1)
其实就是求该数组和的最大值。
步骤:
1、涉及到最大与和,则定义两个变量max和sum,初始值都为array[0];
2、遍历数组,从第二个开始,先进行求和运算;
3、得到和,判断当前sum<0?是将数组中下一个元素赋值给sum;
4、将sum和max进行比较,sum>max时,max=sum。
好,步骤就上面四步,具体代码如下:
public class Solution {
public int FindGreatestSumOfSubArray(int[] array) {
int sum = array[0]; //盛放当前和
int max = array[0]; //记录当前最大值
for(int i=1;i<array.length;i++){
sum+=array[i];
if(sum<0){
i++; //用i++,而不是sum=array[i+1];是因为sum求和时会重复再加一次该元素;
sum=array[i];
}
if(sum>max){
max=sum;
}
}
return max;
}
}
牛客运行通过
运行时间:13ms
运行内存:9432Kb
上面的问题看着很吓人,但是不是很难,简化一下内容,一目了然。在附上解析里大神的操作:
public class Solution {
public int FindGreatestSumOfSubArray(int[] array) {
int max = array[0];
for (int i = 1; i < array.length; i++) {
array[i] += array[i - 1] > 0 ? array[i - 1] : 0;
max = Math.max(max, array[i]);
}
return max;
}
}
牛客运行通过。
运行时间:13ms
运行内存:9420Kb
大佬最关键的一步就是array[i] += array[i - 1] > 0 ? array[i - 1] : 0;
它是把运算的值直接放回了原数组中;并且还做了如果之前的和小于0,则直接用0替代了,非常巧妙!
欢迎兄弟姐妹交流指正~~~