问题 F: 10进制 VS 2进制

博客探讨了如何将一个十进制数转换为其二进制逆序数的过程,例如将十进制数173转换为10110101的二进制形式,并说明了如何处理1000位以内的十进制数的类似转换。
摘要由CSDN通过智能技术生成

题目描述

对于一个十进制数A,将A转换为二进制数,然后按位逆序排列,再转换为十进制数B,我们称B为A的二进制逆序数。
例如对于十进制数173,它的二进制形式为10101101,逆序排列得到10110101,其十进制数为181,181即为173的二进制逆序数。

输入

一个1000位(即10^999)以内的十进制数。

输出

输入的十进制数的二进制逆序数。

样例输入

985

样例输出

623

注:处理好的字符串后面记得加'\0',以免后续发生不必要的出错。

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
struct bign{
	int d[1005];
	int len;
	bign()
	{
		fill(d,d+1005,0);
		len=0;
	}
};
bign change(char s[])
{
	int len=strlen(s);
	int i;
	bign a;
	a.len=len;
	for(i=0;i<len;i++)
	{
		a.d[i]=s[len-1-i]-'0';
	}
	return a;
}
bign divide(bign a,int m,int b,int &r){
	bign c;
	c.len=a.len;
	r=0;
	for(int i=a.len-1;i>=0;i--)
	{
		r=r*m+a.d[i];
		if(r>=b){
			c.d[i]=r/b;
			r=r%b;
		}else
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值