数理统计
CDL_03
这个作者很懒,什么都没留下…
展开
-
机器学习实战-python手写感知机
import timeimport numpy as npimport matplotlib.pyplot as plt#训练数据x=np.array([[3.54,1.97],[3.01,2.55],[7.55,-1.58],[2.11,0],[8.12,1.27], [7.11,-0.98],[8.61,2.05],[2.32,0.26],[3.63,1.73],[0.34,-0.89], [3.12,0.29],[2.12,-0.78],[0.原创 2020-11-06 17:19:29 · 275 阅读 · 2 评论 -
第一张、大数定律与中心极限定理
伯努利大数定律定义:设nAn_{A}nA是n次独立重复试验中事件A发生的次数,p是每次实验中A发生的概率,则∀ε>0\quad\forall \varepsilon >0∀ε>0,都有limn−&a原创 2018-12-02 15:18:02 · 477 阅读 · 0 评论 -
全概率公式、贝叶斯公式
完备事件组设有事件组B1,B2,......BnB_1,B_2,......B_nB1,B2,......Bn,两两互斥,且B1∪B2∪......∪BnB_1\cup B_2 \cup......\cup B_nB1∪B2∪......∪Bn,组成整个样本空间Ω\OmegaΩ,即P(B1)+P(B2)+......+P(Bn)=1P(B_1)+P(B_2)+......+P(B_n...原创 2018-12-06 16:59:44 · 393 阅读 · 0 评论 -
数理统计的基本概念与抽样分布
定理1:设(ξ1,ξ2,......ξn\xi _1,\xi _2,......\xi _nξ1,ξ2,......ξn)是来自总体ξ\xiξ的一个样本,总体期望Eξ=μ,Dξ=σ2E\xi=\mu,D\xi=\sigma^2Eξ=μ,Dξ=σ2,则样本均值的期望和方差:E(ξ‾)=μ,D(ξ‾)=1nσ2样本均值的期望和方差:E(\overline{\xi})=\mu,D(\overli...原创 2019-01-08 11:19:42 · 462 阅读 · 0 评论 -
【转】最大似然估计好文
https://www.matongxue.com/madocs/447.html转载 2019-06-04 16:21:07 · 104 阅读 · 0 评论