标题:完美正方形
如果一些边长互不相同的正方形,可以恰好拼出一个更大的正方形,则称其为完美正方形。
历史上,人们花了很久才找到了若干完美正方形。比如:如下边长的22个正方形
2 3 4 6 7 8 12 13 14 15 16 17 18 21 22 23 24 26 27 28 50 60
如【图1.png】那样组合,就是一种解法。此时,
紧贴上边沿的是:60 50
紧贴下边沿的是:26 28 17 21 18
22阶完美正方形一共有8种。下面的组合是另一种:
2 5 9 11 16 17 19 21 22 24 26 30 31 33 35 36 41 46 47 50 52 61
如果告诉你该方案紧贴着上边沿的是从左到右依次为:47 46 61,
你能计算出紧贴着下边沿的是哪几个正方形吗?
请提交紧贴着下边沿的正方形的边长,从左到右,用空格分开。
不要填写任何多余的内容或说明文字。
50 33 30 41
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int N,vis[60];
int d[]={2,5,9,11,16,17,19,21,22,24,26,30,31,33,35,36,41,50,52,46,47,61};
int G[155][155];
bool inside(int x,int y,int n)
{
if(!(x+n<=155&&y+n<=155)) return false;
for(int i=x;i<n+x;i++)
for(int j=y;j<n+y;j++)
if(G[i][j]) return false;
return true;
}
void Fill(int x,int y,int n,int m)
{
for(int i=x;i<x+n;i++)
for(int j=y;j<y+n;j++)
G[i][j]=m;
}
void Get(int& x,int& y)
{
for(int i=1;i<=154;i++)
for(int j=1;j<=154;j++)
if(!G[i][j]) {
x=i;
y=j;
return ;
}
}
bool solved()
{
for(int i=1;i<=154;i++)
for(int j=1;j<=154;j++)
if(!G[i][j]) return false;
return true;
}
bool dfs(int x,int y)
{
if(solved()) {
return true;
}
else
{
Get(x,y);
for(int k=0;k<19;k++)
{
if(inside(x,y,d[k]))
{
if(!vis[k])
{
Fill(x,y,d[k],d[k]);
vis[k]=1;
if(dfs(x,y+d[k])) return true;
Fill(x,y,d[k],0);
vis[k]=0;
}
}
else break;
}
}
return false;
}
int main()
{
int a[30];
memset(vis,0,sizeof(vis));
memset(G,0,sizeof(G));
Fill(1,1,47,47);
Fill(1,48,46,46);
Fill(1,94,61,61);
sort(d,d+19);
dfs(1,1);
for(int i=1;i<=154;i++)
cout<<G[154][i]<<' ';
return 0;
}