# Dijkstra+堆优化 模板

#include<iostream>
#include<cstdio>
#include<queue>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=30000+5;
struct Edge{
int from,to,weight;
Edge(int from,int to,int weight):from(from),to(to),weight(weight){}
};
struct HeapNode{  //prority_queue 中的优先级
int u,dist;   //dist: u点到起点的最短路 ,u: 有向边的终点
HeapNode(int u,int d):u(u),dist(d){}
bool operator < (const HeapNode& h) const {
return dist>h.dist;
}
};
struct Dijkstra{ //打包在Dijkstra中
int n,m;
vector<Edge> edges;
vector<int> G[maxn];
bool done[maxn];
int dist[maxn];
int p[maxn];
Dijkstra(int n):n(n){
for(int i=0;i<n;i++) G[i].clear();
edges.clear();
}
edges.push_back(Edge(from,to,weight));
m=edges.size();
G[from].push_back(m-1);  //保存from出发的边
}
void dijkstra(int s)
{
priority_queue<HeapNode> Q;
memset(dist,0x7f,sizeof(dist));
memset(done,false,sizeof(done));

dist[s]=0;
Q.push(HeapNode(s,0));
while(!Q.empty())
{
int u=Q.top().u; Q.pop();
if(done[u]) continue;
done[u]=true;
for(int i=0;i<G[u].size();i++)
{
Edge& e=edges[G[u][i]];
int v=e.to ,w=e.weight;
if(dist[v]>dist[u]+w)
{
dist[v]=dist[u]+w;
p[v]=G[u][i];          //记录到各点的最短路径
Q.push(HeapNode(v,dist[v]));
}
}
}
}
};
int main()
{
int n,m,u,v,w;
cin>>n>>m;       //n 点 , m 边
Dijkstra d(n);
for(int i=0;i<m;i++)
{
scanf("%d%d%d",&u,&v,&w);
}
d.dijkstra(1);          //1点出发
cout<<d.dist[n]<<endl;  //到n的最短路径

vector<int> ans;  //打印1~n的路径
for(int i=n;i!=1;i=d.edges[d.p[i]].from)
ans.push_back(i);
for(int i=ans.size()-1;i>=0;i--)
cout<<ans[i]<<' ';
cout<<1<<endl;
cout<<endl;

return 0;
}

#include<iostream>
#include<cstdio>
#include<queue>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=100000+5;
typedef pair<int,int> pii;
struct Edge{
int to,weight;
Edge(int to,int weight):to(to),weight(weight){}
};
vector<vector<Edge> > G(maxn);  //更快
struct Dijkstra{                //打包在Dijkstra中
int n,m;
bool done[maxn];
int dist[maxn];
int p[maxn];
Dijkstra(int n):n(n){
for(int i=0;i<n;i++) G[i].clear();
}
G[from].push_back(Edge(to,weight));  //保存from出发的边
}
void dijkstra(int s)
{
priority_queue<pii,vector<pii>,greater<pii> > Q;
memset(dist,0x7f,sizeof(dist));                  //初始化为无穷大
memset(done,false,sizeof(done));

dist[s]=0;
Q.push(pii(0,s));      //pii (dist ,u)
while(!Q.empty())
{
int u=Q.top().second; Q.pop();
if(done[u]) continue;     //可改为if(dist[u]!=Q.top().first) continue;
done[u]=true;
for(int i=0;i<G[u].size();i++)
{
Edge& e=G[u][i];
int v=e.to ,w=e.weight;
if(dist[v]>dist[u]+w)
{
dist[v]=dist[u]+w;
p[v]=u;            //记录到各点的最短路径
Q.push(pii(dist[v],v));
}
}
}
}
};
int main()
{
int n,m,u,v,w;
cin>>n>>m;       //n 点 , m 边
Dijkstra d(n);
for(int i=0;i<m;i++)
{
scanf("%d%d%d",&u,&v,&w);
}
d.dijkstra(1);          //1点出发
cout<<d.dist[n]<<endl;  //到n的最短路径

vector<int> ans;
for(int i=n;i!=1;i=d.p[i]) ans.push_back(i);
ans.push_back(1);
for(int i=ans.size()-1;i>=0;i--) cout<<ans[i]<<' ';

return 0;
}