9、买卖股票的最佳时机 III

题目描述:
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入: [3,3,5,0,0,3,1,4]
输出: 6
解释: 在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
示例 2:

输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:

输入: [7,6,4,3,1]
输出: 0
解释: 在这个情况下, 没有交易完成, 所以最大利润为 0。
速度有点慢其实

class Solution { 
    public int maxProfit(int[] prices) { 
	int max = 0;
 		int mp [][][] = new int[prices.length][3][3];
	if(prices.length == 0){
			return max;
		}	
//		mp表示的是maxprofit最大利润,分别表示的是第i天,完成了几笔交易,0,1,2,
//		手上是否持有股票0没有,1有股票,那么初始化为:
		mp[0][0][0] = 0;
		mp[0][0][1] = -prices[0];
		mp[0][1][0] = 0;
		mp[0][2][0] = 0;
		mp[0][1][1] = -prices[0];
		
		
		for (int i = 1; i < prices.length; i++) {
			mp[i][0][0] = mp[i-1][0][0];
			
			mp[i][1][0] = Math.max(mp[i-1][0][1] + prices[i], mp[i-1][1][0]);
			
			mp[i][2][0] = Math.max(mp[i-1][2][0], mp[i-1][1][1] + prices[i]);
			
			mp[i][0][1] = Math.max(mp[i-1][0][0] - prices[i], mp[i-1][0][1]);
			
			mp[i][1][1] = Math.max(mp[i-1][1][0] - prices[i], mp[i-1][1][1]);
					
		}
		return mp[prices.length - 1][2][0];
}
}

其实这里有点问题的是,这里默认了如果已经进行了i次交易,那么一定比i-1次的mp要大,这里需要注意一点,因此这里就直接是 mp[i][2][0] = Math.max(mp[i-1][2][0], mp[i-1][1][1] + prices[i]);,而不用考虑上一次的mp[i-1][1][0]和mp[i-1][10[0]情况了。
排名靠前的代码

class Solution {
    public int maxProfit(int[] prices) {
        if(prices.length <= 1){
            return 0;
        }
        int[] dp1 = new int[prices.length];
        int min = prices[0];
        dp1[0] = 0;
        for(int i = 1; i < prices.length; ++i){
            min = Math.min(prices[i], min);
            dp1[i] = Math.max(dp1[i - 1], prices[i] - min);
        }
        int[] dp2 = new int[prices.length];
        int max = prices[prices.length - 1];
        dp2[prices.length - 1] = 0;
        for(int i = prices.length - 2; i >=0; --i){
            max = Math.max(max, prices[i]);
            dp2[i] = Math.max(dp2[i + 1], max - prices[i]);
        }
        int ans = 0;
        for(int i = 1; i < prices.length - 1; ++i){
            ans = Math.max(ans, dp1[i] + dp2[i + 1]);
        }
        ans = Math.max(ans, dp1[prices.length - 1]);
        return ans;
    }
}

2019年12月27日重置,
其实我们可以这么想,既然可以是买卖两次,那么我们可以以i作为分割点,i前面的最大加上i后面的最大即可
就是上面的思路:
代码:

class Solution {
    public int maxProfit(int[] prices) {
    //    public int maxProfit(int[] prices) {
     int len = prices.length - 1;
     if(prices.length == 0){
         return 0;
     }
        int min = prices[0];
        int max = prices[len];
        int dpleft[] = new int[len + 1];
        dpleft[0] = 0;
        int dpright[] = new int[len + 1];
        dpright[len] = 0;
        for (int i = 1; i <= len; i++) {
            min = Math.min(min,prices[i]);
            dpleft[i] = Math.max(dpleft[i - 1],prices[i] - min);
        }

        for (int i = len - 1; i >= 0; i--) {
            max = Math.max(max,prices[i]);
            dpright[i] = Math.max(dpright[i + 1],max - prices[i]);
        }
        int result = 0;
        for (int i = 0; i < dpright.length; i++) {
            result = Math.max(result, dpleft[i] + dpright[i]);
        }
        return result;
    }
}

通用解法:
对于如果是k次的话
dp[i][j][k]
i表示到第几支股票,j表示第几次交易,k为0和1,0表示手上没有股票,1表示有股票

class Solution {
    public int maxProfit(int k, int[] prices) {
     if (prices == null || prices.length == 0){
			return 0;
		}
       if(k >= prices.length / 2){
			int max = 0;
			for (int i = 1; i < prices.length; i++) {
				if(prices[i] > prices[i-1]){
					max += (prices[i] - prices[i - 1]);
				}
			}
			return max;
		}
        int dp [][][] = new int[prices.length][k+1][2];
        dp[0][0][0] = 0;
//        初始化dp数组,1表示的是当前手上有一支股票,0表示没有,i表示的是第i次交易
        for (int i = 0; i <= k; i++) {
			dp[0][i][1] = -prices[0];
		}
        for (int i = 1; i < dp.length; i++) {
        //后面的1表示的是当前手上有一支股票,0表示没有
        	dp[i][0][1] = Math.max(dp[i-1][0][0] - prices[i] , dp[i-1][0][1]);
        	//表示不买i支股票
        	dp[i][0][0] = dp[i-1][0][0];
			for (int j = 1; j <= k; j++) {
			//当前手上没有股票那么有两种情况
				dp[i][j][0] = Math.max(dp[i-1][j-1][1] + prices[i], dp[i-1][j][0]);
				//当前手上有一支股票的条件
				dp[i][j][1] = Math.max(dp[i-1][j][1], dp[i-1][j][0] - prices[i]);
			}
		}
        return dp[prices.length - 1][k][0];   
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值