题目描述:
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [3,3,5,0,0,3,1,4]
输出: 6
解释: 在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
示例 2:
输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入: [7,6,4,3,1]
输出: 0
解释: 在这个情况下, 没有交易完成, 所以最大利润为 0。
速度有点慢其实
class Solution {
public int maxProfit(int[] prices) {
int max = 0;
int mp [][][] = new int[prices.length][3][3];
if(prices.length == 0){
return max;
}
// mp表示的是maxprofit最大利润,分别表示的是第i天,完成了几笔交易,0,1,2,
// 手上是否持有股票0没有,1有股票,那么初始化为:
mp[0][0][0] = 0;
mp[0][0][1] = -prices[0];
mp[0][1][0] = 0;
mp[0][2][0] = 0;
mp[0][1][1] = -prices[0];
for (int i = 1; i < prices.length; i++) {
mp[i][0][0] = mp[i-1][0][0];
mp[i][1][0] = Math.max(mp[i-1][0][1] + prices[i], mp[i-1][1][0]);
mp[i][2][0] = Math.max(mp[i-1][2][0], mp[i-1][1][1] + prices[i]);
mp[i][0][1] = Math.max(mp[i-1][0][0] - prices[i], mp[i-1][0][1]);
mp[i][1][1] = Math.max(mp[i-1][1][0] - prices[i], mp[i-1][1][1]);
}
return mp[prices.length - 1][2][0];
}
}
其实这里有点问题的是,这里默认了如果已经进行了i次交易,那么一定比i-1次的mp要大,这里需要注意一点,因此这里就直接是 mp[i][2][0] = Math.max(mp[i-1][2][0], mp[i-1][1][1] + prices[i]);,而不用考虑上一次的mp[i-1][1][0]和mp[i-1][10[0]情况了。
排名靠前的代码
class Solution {
public int maxProfit(int[] prices) {
if(prices.length <= 1){
return 0;
}
int[] dp1 = new int[prices.length];
int min = prices[0];
dp1[0] = 0;
for(int i = 1; i < prices.length; ++i){
min = Math.min(prices[i], min);
dp1[i] = Math.max(dp1[i - 1], prices[i] - min);
}
int[] dp2 = new int[prices.length];
int max = prices[prices.length - 1];
dp2[prices.length - 1] = 0;
for(int i = prices.length - 2; i >=0; --i){
max = Math.max(max, prices[i]);
dp2[i] = Math.max(dp2[i + 1], max - prices[i]);
}
int ans = 0;
for(int i = 1; i < prices.length - 1; ++i){
ans = Math.max(ans, dp1[i] + dp2[i + 1]);
}
ans = Math.max(ans, dp1[prices.length - 1]);
return ans;
}
}
2019年12月27日重置,
其实我们可以这么想,既然可以是买卖两次,那么我们可以以i作为分割点,i前面的最大加上i后面的最大即可
就是上面的思路:
代码:
class Solution {
public int maxProfit(int[] prices) {
// public int maxProfit(int[] prices) {
int len = prices.length - 1;
if(prices.length == 0){
return 0;
}
int min = prices[0];
int max = prices[len];
int dpleft[] = new int[len + 1];
dpleft[0] = 0;
int dpright[] = new int[len + 1];
dpright[len] = 0;
for (int i = 1; i <= len; i++) {
min = Math.min(min,prices[i]);
dpleft[i] = Math.max(dpleft[i - 1],prices[i] - min);
}
for (int i = len - 1; i >= 0; i--) {
max = Math.max(max,prices[i]);
dpright[i] = Math.max(dpright[i + 1],max - prices[i]);
}
int result = 0;
for (int i = 0; i < dpright.length; i++) {
result = Math.max(result, dpleft[i] + dpright[i]);
}
return result;
}
}
通用解法:
对于如果是k次的话
dp[i][j][k]
i表示到第几支股票,j表示第几次交易,k为0和1,0表示手上没有股票,1表示有股票
class Solution {
public int maxProfit(int k, int[] prices) {
if (prices == null || prices.length == 0){
return 0;
}
if(k >= prices.length / 2){
int max = 0;
for (int i = 1; i < prices.length; i++) {
if(prices[i] > prices[i-1]){
max += (prices[i] - prices[i - 1]);
}
}
return max;
}
int dp [][][] = new int[prices.length][k+1][2];
dp[0][0][0] = 0;
// 初始化dp数组,1表示的是当前手上有一支股票,0表示没有,i表示的是第i次交易
for (int i = 0; i <= k; i++) {
dp[0][i][1] = -prices[0];
}
for (int i = 1; i < dp.length; i++) {
//后面的1表示的是当前手上有一支股票,0表示没有
dp[i][0][1] = Math.max(dp[i-1][0][0] - prices[i] , dp[i-1][0][1]);
//表示不买i支股票
dp[i][0][0] = dp[i-1][0][0];
for (int j = 1; j <= k; j++) {
//当前手上没有股票那么有两种情况
dp[i][j][0] = Math.max(dp[i-1][j-1][1] + prices[i], dp[i-1][j][0]);
//当前手上有一支股票的条件
dp[i][j][1] = Math.max(dp[i-1][j][1], dp[i-1][j][0] - prices[i]);
}
}
return dp[prices.length - 1][k][0];
}
}