题目1011:最大连续子序列 九度OJ

题目1011:最大连续子序列

时间限制:1 秒

内存限制:32 兆

特殊判题:

提交:7218

解决:3428

题目描述:
    给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和为20。现在增加一个要求,即还需要输出该子序列的第一个和最后一个元素。
输入:

    测试输入包含若干测试用例,每个测试用例占2行,第1行给出正整数K( K< 10000 ),第2行给出K个整数,中间用空格分隔。当K为0时,输入结束,该用例不被处理。

输出:

    对每个测试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。

样例输入:
6
-2 11 -4 13 -5 -2
10
-10 1 2 3 4 -5 -23 3 7 -21
6
5 -8 3 2 5 0
1
10
3
-1 -5 -2
3
-1 0 -2
0
样例输出:
20 11 13
10 1 4
10 3 5
10 10 10
0 -1 -2
0 0 0
来源:
2005年浙江大学计算机及软件工程研究生机试真题

#include <cstdio>
#define MAX 10005
//暴力求解 
int a[MAX];
int main(){
	int k;
	while(scanf("%d",&k)!=EOF&&k!=0){
		for(int i=0;i<k;i++){
			scanf("%d",&a[i]);
		}
		int ThisSum,MaxSum=0;
		int pos1=0,pos2=k-1;
		for(int i=0;i<k;i++){
			ThisSum=0;
			for(int j=i;j<k;j++){
				ThisSum+=a[j];
				if(ThisSum>MaxSum){
					MaxSum=ThisSum;
					pos1=i;
					pos2=j;
				}
			}
		}
		if(MaxSum==0){
			for(int i=0;i<k;i++){
				if(a[i]==0){
					pos1=i;
					pos2=i;
					break;
				}
			} 
		}
		printf("%d %d %d\n",MaxSum,a[pos1],a[pos2]);
	}
	return 0;
} 
#include <cstdio>
#define MAX 10005
int a[MAX];
//在线处理 
int main(){
	int k;
	while(scanf("%d",&k)!=EOF&&k!=0){
		for(int i=0;i<k;i++){
			scanf("%d",&a[i]);
		}
		int ThisSum=0,MaxSum=0;
		int pos1=0,pos2=k-1;
		int ThisPos1,ThisPos2;
		for(int i=0;i<k;i++){
			if(ThisSum==0&&a[i]>0){
				ThisPos1=i;
			}
			ThisSum+=a[i];
			if(ThisSum>MaxSum){
				MaxSum=ThisSum;
				pos1=ThisPos1;
				pos2=i;
			}
			if(ThisSum<0){
				ThisSum=0;
			}
		}
			if(MaxSum==0){
			for(int i=0;i<k;i++){
				if(a[i]==0){
					pos1=i;
					pos2=i;
					break;
				}
			} 
		}
		printf("%d %d %d\n",MaxSum,a[pos1],a[pos2]);
	}
	return 0;
} 

其实最大连续子序列还是值得仔细分析一下的。我记得之前在浙大MOOC数据结构公开课上看到了关于最大连续子序列的分析。在这里贴出来总结一下,便于以后回顾。
//算法1---O(N^3) :暴力求解 三层嵌套for循环 ------------------------------------- 
int MaxSubseqSum1(int A[],int N){
	int ThisSum,MaxSum=0;
	int i,j,k;
	for(int i=0;i<N;i++){//确定子序列左边界 
		for(int j=i;j<N;j++){//确定子序列右边界 
			ThisSum=0;       //左边界为 i, 右边界为 j,
			//左右边界确定后,在遍历该子序列之前, 将该子序列的和置零 
			for(int k=i;k<=j;k++){
				ThisSum+=A[k];// ThisSum 是以A[i]到A[j]的子列和 
			}	
			if(ThisSum>MaxSum){
				MaxSum=ThisSum;//判断该子序列的和是否大于最大子序列和 
			}
		}
	}
	return MaxSum; 
} 

//算法2---O(N^2) :相较于算法1中第三层循环很多余,故改进为算法2   ---------------------------------- 
int MaxSubseqSum2(int A[],int N){
	int ThisSum,MaxSum=0;
	int i,j,k;
	for(int i=0;i<N;i++){//i 是子列左端位置 
		ThisSum=0;//ThisSum是从A[i] 到 A[j]的子列和 
		for(int j=i;j<N;j++){//j是子列右端的位置 
			ThisSum+=A[j];//对于相同的i,不同的j,只要在j-1次循环的基础上累加1项即可 
			if(ThisSum>MaxSum){//如果刚得到的这个子列和更大 
				MaxSum=ThisSum;//则更新结果 
			}
		}
	}
} 

//算法3---O(NlogN) 分而治之  --------------------------------------------------------------------- 
int Max3( int A, int B, int C )
{ /* 返回3个整数中的最大值 */
    return A > B ? A > C ? A : C : B > C ? B : C;
}
 
int DivideAndConquer( int List[], int left, int right )
{ /* 分治法求List[left]到List[right]的最大子列和 */
    int MaxLeftSum, MaxRightSum; /* 存放左右子问题的解 */
    int MaxLeftBorderSum, MaxRightBorderSum; /*存放跨分界线的结果*/
 
    int LeftBorderSum, RightBorderSum;
    int center, i;
 
    if( left == right )  { /* 递归的终止条件,子列只有1个数字 */
        if( List[left] > 0 )  return List[left];
        else return 0;
    }
 
    /* 下面是"分"的过程 */
    center = ( left + right ) / 2; /* 找到中分点 */
    /* 递归求得两边子列的最大和 */
    MaxLeftSum = DivideAndConquer( List, left, center );
    MaxRightSum = DivideAndConquer( List, center+1, right );
 
    /* 下面求跨分界线的最大子列和 */
    MaxLeftBorderSum = 0; LeftBorderSum = 0;
    for( i=center; i>=left; i-- ) { /* 从中线向左扫描 */
        LeftBorderSum += List[i];
        if( LeftBorderSum > MaxLeftBorderSum )
            MaxLeftBorderSum = LeftBorderSum;
    } /* 左边扫描结束 */
 
    MaxRightBorderSum = 0; RightBorderSum = 0;
    for( i=center+1; i<=right; i++ ) { /* 从中线向右扫描 */
        RightBorderSum += List[i];
        if( RightBorderSum > MaxRightBorderSum )
            MaxRightBorderSum = RightBorderSum;
    } /* 右边扫描结束 */
 
    /* 下面返回"治"的结果 */
    return Max3( MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum );
}
 
int MaxSubseqSum3( int List[], int N )
{ /* 保持与前2种算法相同的函数接口 */
    return DivideAndConquer( List, 0, N-1 );
}

//算法4---O(N):在线处理----------------------------------------------------------- 
 int MaxSubseqSum4(int A[],int N){
 	int ThisSum=0,MaxSum=0;
 	int i;
 	for(i=0;i<N;i++){
 		ThisSum+=A[i];//向右累加 
		 if(ThisSum>MaxSum){
		 	MaxSum=ThisSum;//发现更大和则更新当前结果 
		 }else if(ThisSum<0){//如果当前子列和为负 
		 	ThisSum=0;//则不可能使后面的部分和增大,抛弃之 
		 }
	 }
	 return MaxSum;
 }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值