题目1011:最大连续子序列
//算法1---O(N^3) :暴力求解 三层嵌套for循环 -------------------------------------
int MaxSubseqSum1(int A[],int N){
int ThisSum,MaxSum=0;
int i,j,k;
for(int i=0;i<N;i++){//确定子序列左边界
for(int j=i;j<N;j++){//确定子序列右边界
ThisSum=0; //左边界为 i, 右边界为 j,
//左右边界确定后,在遍历该子序列之前, 将该子序列的和置零
for(int k=i;k<=j;k++){
ThisSum+=A[k];// ThisSum 是以A[i]到A[j]的子列和
}
if(ThisSum>MaxSum){
MaxSum=ThisSum;//判断该子序列的和是否大于最大子序列和
}
}
}
return MaxSum;
}
//算法2---O(N^2) :相较于算法1中第三层循环很多余,故改进为算法2 ----------------------------------
int MaxSubseqSum2(int A[],int N){
int ThisSum,MaxSum=0;
int i,j,k;
for(int i=0;i<N;i++){//i 是子列左端位置
ThisSum=0;//ThisSum是从A[i] 到 A[j]的子列和
for(int j=i;j<N;j++){//j是子列右端的位置
ThisSum+=A[j];//对于相同的i,不同的j,只要在j-1次循环的基础上累加1项即可
if(ThisSum>MaxSum){//如果刚得到的这个子列和更大
MaxSum=ThisSum;//则更新结果
}
}
}
}
//算法3---O(NlogN) 分而治之 ---------------------------------------------------------------------
int Max3( int A, int B, int C )
{ /* 返回3个整数中的最大值 */
return A > B ? A > C ? A : C : B > C ? B : C;
}
int DivideAndConquer( int List[], int left, int right )
{ /* 分治法求List[left]到List[right]的最大子列和 */
int MaxLeftSum, MaxRightSum; /* 存放左右子问题的解 */
int MaxLeftBorderSum, MaxRightBorderSum; /*存放跨分界线的结果*/
int LeftBorderSum, RightBorderSum;
int center, i;
if( left == right ) { /* 递归的终止条件,子列只有1个数字 */
if( List[left] > 0 ) return List[left];
else return 0;
}
/* 下面是"分"的过程 */
center = ( left + right ) / 2; /* 找到中分点 */
/* 递归求得两边子列的最大和 */
MaxLeftSum = DivideAndConquer( List, left, center );
MaxRightSum = DivideAndConquer( List, center+1, right );
/* 下面求跨分界线的最大子列和 */
MaxLeftBorderSum = 0; LeftBorderSum = 0;
for( i=center; i>=left; i-- ) { /* 从中线向左扫描 */
LeftBorderSum += List[i];
if( LeftBorderSum > MaxLeftBorderSum )
MaxLeftBorderSum = LeftBorderSum;
} /* 左边扫描结束 */
MaxRightBorderSum = 0; RightBorderSum = 0;
for( i=center+1; i<=right; i++ ) { /* 从中线向右扫描 */
RightBorderSum += List[i];
if( RightBorderSum > MaxRightBorderSum )
MaxRightBorderSum = RightBorderSum;
} /* 右边扫描结束 */
/* 下面返回"治"的结果 */
return Max3( MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum );
}
int MaxSubseqSum3( int List[], int N )
{ /* 保持与前2种算法相同的函数接口 */
return DivideAndConquer( List, 0, N-1 );
}
//算法4---O(N):在线处理-----------------------------------------------------------
int MaxSubseqSum4(int A[],int N){
int ThisSum=0,MaxSum=0;
int i;
for(i=0;i<N;i++){
ThisSum+=A[i];//向右累加
if(ThisSum>MaxSum){
MaxSum=ThisSum;//发现更大和则更新当前结果
}else if(ThisSum<0){//如果当前子列和为负
ThisSum=0;//则不可能使后面的部分和增大,抛弃之
}
}
return MaxSum;
}